

8-bit
Microcontrollers

Application Note

Rev. 8087A-AVR-07/07

AVR2001: AT86RF230 Software Programmer's
Guide

Features
• Complete set of programming sequences for the AT86RF230 radio transceiver.

- Extends the information in the datasheet.
- Detailed Timing Information.
- Hints and Notifications for optimized usage.

• Introduction to the Transceiver Access Toolbox and its API.
• Optimized usage of the radio transceiver in IEEE 802.15.4TM and ZigBee TM

applications.

1 Introduction
This application note contains the software programmer’s guide for the AT86RF230
radio transceiver. This document goes into greater depth than the datasheet when
it comes to correct configuration and usage of the features that the radio
transceiver provides. Each feature is presented and its usage documented with
sequence diagrams and descriptions. Timing information is also included where
applicable.

For a person that knows the C programming language and the AVR®
microcontroller, it will be easy to convert the programming sequences described in
this document, and use them in a wireless application.

The Transceiver Access Toolbox (TAT) is such an implementation. This is a low
level library that provides the end user with an easy to use interface to the rich set
of features of the radio transceiver. The TAT is presented in the latter half of this
document.

2 AVR2001
8087A-AVR-07/07

2 Intended Audience and Overview
This application note is intended for any personal that will design and build
applications using the AT86RF230 radio transceiver. The reason for providing a
software programmer’s guide is to extend and enhance many aspects of the
datasheet. This document provides detailed information on the functionality of the
radio transceiver optimized for an embedded programmer’s point of view.

This application note is divided into two main sections. In chapter 3 to chapter 8 the
main features of the radio transceiver is presented. Each feature is documented with
sequence diagrams and textual descriptions. Some of the features are also
documented with timing information and hints on optimized use and implementation.
In chapter 9 the Transceiver Access Toolbox is presented. This is an example of
suggested use of the radio transceiver implemented in the C programming language.
A complete API description for the TAT can be found in Appendix A.

3 Programming Sequence: Transceiver Setup
This chapter will present the necessary steps to get the radio transceiver up and
running after power-on. Some other basic functionality is also introduced, such as
channel and output power selection. Table 3-1 gives a quick reference to the
described sequences.

Table 3-1. Described Programming Sequences
Sequence Chapter Comment

Initialize Radio Transceiver Section 3.1 Initialize radio after power-on.

Hardware Reset Section 3.2
Reset all registers to their default value and
the state machine.

Reset State Machine Section 3.3
Rest the state machine. Registers are not
reset to their default values.

Get Current Channel Section 3.4
Read what channel the radio transceiver is
operating on.

Set Current Channel Section 3.5 Set new channel to operate on.

Get Transmit Power Section 3.6
Read the output power of the radio
transceiver.

Set Transmit Power Section 3.7 Set new output power level.

3.1 Radio Transceiver Initialization
This section describes how to correctly bring the radio transceiver into the TRX_OFF
state after a power-on event. Nevertheless, the described programming sequence
can be executed from any state without any side effects.

Figure 3-1 depicts the correct sequence of actions to initialize the radio transceiver.
As mentioned above the radio transceiver can be in any state when this programming
sequence is started.

A hardware reset is initiated by pulling the RST line low. 6 µs later the same line is
pulled high again and the hardware reset finished. All registers will have their default
values and the state machine will be in P_ON or TRX_OFF state. The state will be

 AVR2001

P_ON if the programming sequence was initiated after a power-on event and
TRX_OFF in any other case. The TRX_OFF command is written to the
TRX_STATE.TRX_CMD sub register to ensure a transition from P_ON to TRX_OFF.
This transition takes 510 µs from P_ON. The user must set the interrupt mask, since
all interrupts were disabled during the hardware reset.

A description of the associated TAT implementation can be found in section 11.1.

Figure 3-1 MSC for Hardware Initialization

mcu AT86RF230

RST Low

SLP_TR Low

6 us

RST High

Send TRX_OFF Command

510 us

510 us

3.2 Hardware Reset
This section describes how to reset the radio transceiver from any state except
P_ON. However, this should not be an issue, since the P_ON state can only be
reached after a power-on event. The programming sequence will typically be used to
recover from fatal errors and bring the radio transceiver to a known state.

Figure 3-2 depicts the correct sequence of actions to reset the radio transceiver. A
hardware reset is initiated by pulling the RST line low. 6 µs later the same line is
pulled high again and the hardware reset finished. All registers will have their default
values and the state machine will be in TRX_OFF state.

A description of the associated TAT implementation can be found in section 11.25.

 3

8087A-AVR-07/07

4 AVR2001

Figure 3-2 MSC for Hardware Reset

mcu AT86RF230
RST Low

SLP_TR Low

6 us

RST High

3.3 Reset State Machine
This section describes how to reset the state machine of the radio transceiver to the
TRX_OFF state. All other registers are not affected, only currents state of the state
machine. The programming sequence will typically be used to recover a locked state
machine or to recover from other fatal errors.

Figure 3-3 depicts the correct sequence of actions to reset the state. The sequence
assumes that the radio transceiver is not in the P_ON state or the SLEEP state. First
the SLP_TR pin is pulled low to ensure that the radio transceiver is not in any of the
*_NOCLK states. Then the FORCE_TRX_OFF command is written to the
TRX_STATE.TRX_CMD sub register. The TRX_OFF state will be entered after 6 µs.

A description of the associated TAT implementation can be found in section 11.24.

Figure 3-3 MSC for State Machine Reset

mcu AT86RF230

Send FORCE_TRX_OFF Command

6 us

SLP_TR Low

6 us

3.4 Get Current Channel
The programming sequence that returns the operating channel used by the radio
transceiver is very simple. This is simply done by reading the content of the
PHY_CC_CCA.CHANNEL sub register. This register can be read at any time without
affecting any frame transaction. It is assumed that the radio transceiver is not in the
P_ON or the SLEEP state.

8087A-AVR-07/07

 AVR2001

 5

8087A-AVR-07/07

A description of the associated TAT implementation can be found in section 11.2.

3.5 Set Current Channel
This section describes the actions required to change the operating channel of the
radio transceiver. The operating channel can be changed from any state, except
SLEEP, by writing to the PHY_CC_CCA.CHANNEL sub register.

If the radio transceiver is in the RX_ON or PLL_ON state and the new operating
channel does not equal the one currently used, the PLL_LOCK interrupt event will be
signaled. The PLL should lock to the new channel within 150 µs.

A description of the associated TAT implementation can be found in section 11.3.

3.6 Get Transmit Power
The output power of the radio transceiver can be varied from 3 dBm to –17.2 dBm via
the PHY_TX_PWR.TX_PWR sub register. The content of the mentioned sub register
will be a number between 0 and 15. And can be read in any state except P_ON and
SLEEP. See the datasheet for more information on the mapping between power
levels and actual output power in dBm.

A description of the associated TAT implementation can be found in section 11.4.

3.7 Set Transmit Power
As mentioned in section 3.6, the output power can be varied in 16 levels ranging from
3 dBm to – 17.2 dBm. Writing to the PHY_TX_PWR.TX_PWR sub register sets a new
output power. This can be done from any of the radio transceiver’s states except
P_ON and SLEEP.

A description of the associated TAT implementation can be found in section 11.5.

4 Programming Sequence: State Transitions
The state machine of the AT86RF230 is one of the key components to control the
operation of the radio transceiver. Each state has a set of functionality associated
with it, and by sequencing between the different states these are unveiled to the end
user. In Table 4-1 and Table 4-2 the 14 defined states are listed and categorized as
either basic or transient.

The transient states can only be reached from one of the basic states when a defined
event occurs, such as the reception of a correct preamble and SFD in RX_ON. In this
particular scenario the state will change to RX_BUSY until the frame has been
completely received. Writing commands into the TRX_STATE.TRX_CMD sub register
alters the basic state of the radio transceiver and hence how it operates. This chapter
will focus on details in the transition between the basic states. RX_ON_NOCLK and
RX_AACK_ON_NOCLK are not covered, since they are simply entered from RX_ON
or RX_AACK_ON respectively by pulling the SLP_TR line high.

Table 4-1. Basic Radio Transceiver States
State Section Comment

TRX_OFF Section 4.1 Transitions to TRX_OFF.

RX_ON Section 4.2 Transitions to RX_ON.

6 AVR2001
8087A-AVR-07/07

State Section Comment

PLL_ON Section 4.3 Transitions to PLL_ON.

RX_ON_NOCLK Na
State is reached from RX_ON by pulling the
SLP_TR line high.

RX_AACK_ON Section 4.4 Transitions to RX_AACK_ON.

RX_AACK_ON_NOCLK na
State is reached from RX_AACK_ON by
pulling the SLP_TR line high.

TX_ARET_ON Section4.5 Transitions to TX_ARET_ON.

SLEEP Section 4.6 Transitions to SLEEP.

Table 4-2. Transient Radio Transceiver States
State Comment

P_ON
This state is only entered during the power-up sequence of
the radio transceiver.

BUSY_RX
This state is only entered from RX_ON or RX_ON_NOCLK
state if a valid Preamble and SFD has been detected.

BUSY_RX_AACK
This state is only entered during frame reception in
RX_AACK_ON or BUSY_RX_AACK_NOCLK.

BUSY_RX_AACK_NOCLK
Only entered from the RX_AACK_ON_NOCLK state during
frame reception.

BUSY_TX
Entered from the PLL_ON state when a frame transmission is
initiated.

BUSY_TX_ARET
Entered from the TX_ARET_ON state when the SLP_TR pin
is pulled high.

STATE_TRANSITION
The radio transceiver’s state machine is in transition between
two states.

4.1 Transitions to TRX_OFF
Transitions to the TRX_OFF state can generally be divided in two.

Figure 4-1shows the correct sequence to do a state transition from any state where
the PLL is active, that is: RX_ON, RX_AACK_ON, PLL_ON or TX_ARET_ON, and to
TRX_OFF. This is simply done by writing the TRX_OFF command to the
TRX_STATE.TRX_CMD sub register. As the figure indicates, this transition should be
completed in 1 µs.

Figure 4-2 show another way to reach the TRX_OFF state. The FORCE_TRX_OFF
command works as a state machine reset. Writing this command to the
TRX_STATE.TRX_CMD sub register will set the state to TRX_OFF from any of the
basic states, except SLEEP, within 1 µs.

 AVR2001

Figure 4-1 PLL Active to TRX_OFF

mcu AT86RF230

Write TRX_OFF to TRX_STATE.TRX_CMD

1 us

Figure 4-2 TRX_OFF Forced

mcu AT86RF230

Write FORCE_TRX_OFF to TRX_STATE.TRX_CMD

1 us

4.2 Transitions to RX_ON
In the RX_ON state the digital receiver blocks and PLL frequency synthesizer is
active. The preamble and SFD detectors are running in the digital processing path,
searching for valid IEEE 802.15.4 SHRs. The state is automatically changed to
RX_BUSY when a valid preamble and SFD is detected.

Figure 4-3 shows the correct sequence for changing the state to RX_ON from
TRX_OFF. The state transition is initiated by writing the RX_ON command to the
TRX_STATE.TRX_CMD sub register. The transition is completed within 180 µs.
During this time period the PLL_LOCK event is signaled from the radio transceiver on
the IRQ pin.

If the radio transceiver is already in a state where the PLL is active, RX_AACK_ON,
PLL_ON or TX_ARET_ON, the RX_ON state can be reached within 1 µs after the
RX_ON command was issued. Details of this sequence can be seen in Figure 4-4.

 7

8087A-AVR-07/07

8 AVR2001

Figure 4-3 RX_ON from TRX_OFF

mcu AT86RF230

Write RX_ON to TRX_STATE.TRX_CMD

180 us

PLL_LOCK Interrupt

Figure 4-4 RX_ON from PLL Active

mcu AT86RF230

Write RX_ON to TRX_STATE.TRX_CMD

1 us

4.3 Transitions to PLL_ON
The PLL_ON state corresponds to the TX_ON state in the IEEE 802.15.4 standard. In
this state the PLL frequency synthesizer is enabled and locked to the transmit
frequency. In other words the radio transceiver is ready for frame transmission
(Frame transmission is described in section 6.1 and section 6.2). The sequences
described in this section is similar to those of section 4.2.

Figure 4-5 depicts how to do a state transition from TRX_OFF to PLL_ON. The
sequence is initiated by issuing the PLL_ON command (writing to the
TRX_STATE.TRX_CMD sub register). Within 180 µs the PLL_LOCK event is
signaled and the new state of radio transceiver will be PLL_ON.

The PLL_ON state can be reached faster from a state where the PLL is already active
(RX_ON, RX_AACK_ON or TX_ARET_ON). For this group of states the transition
time is only 1 µs after writing the PLL_ON command to the TRX_STATE.TRX_CMD
sub register. See Figure 4-6 for further details.

8087A-AVR-07/07

 AVR2001

Figure 4-5 PLL_ON from TRX_OFF

mcu AT86RF230

Write PLL_ON to TRX_STATE.TRX_CMD

180 us

PLL_LOCK Interrupt

Figure 4-6 PLL_ON from PLL Active states

mcu AT86RF230

Write PLL_ON to TRX_STATE.TRX_CMD

1 us

4.4 Transitions to RX_AACK_ON
The RX_AACK_ON state is one of the radio transceiver’s automated states. This
state is similar to the previously mentioned RX_ON state, but a frame filter as defined
in the IEEE 802.15.4 standard, is applied to any incoming frame and an acknowledge
sent if requested by the originator.

It is possible to go directly to the RX_AACK_ON state from TRX_OFF. However, this
is not recommended, since it will be impossible to know if the PLL locked or not. This
has to do with the PLL_LOCK interrupt being masked out in the RX_AACK_ON state
(See the datasheet for further information about interrupt handling in the
RX_AACK_ON state). Figure 4-7 depicts how to do the state transition from
TRX_OFF, via RX_ON, to RX_AACK_ON and hence ensure that the PLL locks. The
sequence is simply built from that described in Figure 4-3 with an additional transition
from RX_ON to RX_AACK_ON.

In Figure 4-8 the sequence assumes that the radio transceiver is already in either
RX_ON or PLL_ON. In both cases the state transition to RX_AACK_ON is executed
by writing the RX_AACK_ON command to the TRX_STATE.TRX_CMD sub register.
A 1 µs delay is associated with this particular state transition.

It is not possible to do a direct state transition from TX_ARET_ON to RX_AACK_ON,
as it is between RX_ON and PLL_ON. Figure 4-9 illustrates the correct sequence for
doing the above-mentioned state transition. It is necessary to an intermediate
transition to PLL_ON. However, the complete sequence will take approximately 2 µs.

 9

8087A-AVR-07/07

10 AVR2001

Figure 4-7 RX_AACK_ON from TRX_OFF

mcu AT86RF230

Write RX_ON to TRX_STATE.TRX_CMD

180 us

PLL_LOCK Interrupt

Write RX_AACK_ON to TRX_STATE.TRX_CMD

1 us

RX_ON

Figure 4-8 RX_AACK_ON from RX_ON or PLL_ON

mcu AT86RF230

Write RX_AACK_ON to TRX_STATE.TRX_CMD

1 us

Figure 4-9 RX_AACK_ON from TX_ARET_ON

8087A-AVR-07/07

 AVR2001

mcu AT86RF230

Write PLL_ON to TRX_STATE.TRX_CMD

1 us

Write RX_AACK_ON to TRX_STATE.TRX_CMD

1 us

PLL_ON

4.5 Transitions to TX_ARET_ON
The TX_ARET_ON state is another automated state. This state is similar to the
previously mentioned PLL_ON state, but it applies the CSMA algorithm as defined in
the IEEE 802.15.4 standard, given that the associated parameters are configured
(See section 7.2 and section 8.1 for detailed information about configuration and
frame transmission).

It is possible to go directly to the TX_ARET_ON state from TRX_OFF. However, this
is not recommended, since it will be impossible to know if the PLL locked or not. This
has to do with the PLL_LOCK interrupt being masked out in the TX_ARET_ON state
(See the datasheet for further information about interrupt handling in the
TX_ARET_ON state). Figure 4-10 depicts how to do the state transition from
TRX_OFF, via PLL_ON, to TX_ARET_ON and still ensure that the PLL has locked.
The sequence is simply built from that described in Figure 4-5 with an additional
transition from PLL_ON to TX_ARET_ON.

In Figure 4-11 the sequence assumes that the radio transceiver is already in either
RX_ON or PLL_ON. In both cases the state transition to TX_ARET_ON is executed
by writing the TX_ARET_ON command to the TRX_STATE.TRX_CMD sub register.
A 1 µs delay is associated with this particular state transition.

It is not possible to do a direct state transition from RX_AACK_ON to TX_ARET_ON
as it is between RX_ON and PLL_ON. Figure 4-12 illustrates the correct sequence for
doing the above-mentioned state transition. It is necessary to an intermediate
transition to RX_ON. However, the complete sequence will take approximately 2 µs.

 11

8087A-AVR-07/07

12 AVR2001

Figure 4-10 TX_ARET_ON from TRX_OFF

mcu AT86RF230

Write PLL_ON to TRX_STATE.TRX_CMD

180 us

PLL_LOCK Interrupt

Write TX_ARET_ON to TRX_STATE.TRX_CMD

1 us

PLL_ON

Figure 4-11 TX_ARET_ON from RX_ON or PLL_ON

mcu AT86RF230

Write TX_ARET_ON to TRX_STATE.TRX_CMD

1 us

Figure 4-12 TX_ARET_ON from RX_AACK_ON

8087A-AVR-07/07

 AVR2001

mcu AT86RF230

Write RX_ON to TRX_STATE.TRX_CMD

1 us

Write TX_ARET_ON to TRX_STATE.TRX_CMD

1 us

RX_ON

4.6 Transitions to SLEEP
SLEEP is a low power state that is used to minimize the power consumption of the
radio transceiver to a bare minimum, without erasing its memory. The state is only
accessible from TRX_OFF. The reminder of this section describes how it is possible
to enter and leave the SLEEP state from TRX_OFF and associated timing
information.

Figure 4-13 depicts the correct sequence to follow when taking the radio transceiver
to sleep. The operation is initiated by pulling the SLP_TR pin high in the TRX_OFF
state. The radio transceiver will enter SLEEP 35 clock cycles on the CLKM pin later
(At the default CLKM frequency of 1MHz this will take 35 µs). The reason for this 35-
clock cycles delay is to ensure that any microcontroller clocked from this signal can
complete its power-down sequence.

The opposite transition is illustrated in Figure 4-14. It will take up to 880 µs from the
SLP_TR pin is pulled low before the radio transceiver’s state machine is back in the
TRX_OFF state.

 13

8087A-AVR-07/07

14 AVR2001

Figure 4-13 SLEEP from TRX_OFF

mcu AT86RF230

PULL SLP_TR Line High

35 cycles on the CLKM pin.

Figure 4-14 TRX_OFF from SLEEP

mcu AT86RF230

PULL SLP_TR Line Low

880 us

4.7 Short Summary
• Any transition between RX_ON and PLL_ON or RX_ON and PLL_ON to

RX_AACK_ON or TX_ARET_ON can be done within 1 µs.
• The PLL will lock within 180 µs from TRX_OFF.
• The RX_AACK_ON and TX_ARET_ON states should only be accessed from

RX_ON or PLL_ON. Not directly from TRX_OFF even if this is possible.

5 Programming Sequence: CCA, ED, LQI and RSSI Measurements
Table 5-1 gives a quick reference to the described sequences within this chapter.

Table 5-1. Described Programming Sequences
Sequence Chapter Comment

Clear Channel Assessment Section 5.1 How to configure and use the CCA.

Energy Detection Section 5.2 Describes how to use the ED measurement.

Link Quality Indication Section 5.3 LQI measurement.

Received Signal Strength
Indication Section 5.4

How to read and interpret the RSSI value in
different scenario.

8087A-AVR-07/07

 AVR2001

 15

8087A-AVR-07/07

5.1 Clear Channel Assessment
The Clear Channel Assessment (CCA) is an important part of the channel access
scheme used by IEEE 802.15.4 and ZigBee. This procedure is used to determine if
the channel is occupied with traffic or if it is ready for transmission.

5.1.1 Setup and Configuration

The AT86RF230 radio transceiver support three different CCA modes as required by
the IEEE802.15.4 standard:

1. Energy Above Threshold: A busy channel shall be reported upon detecting
any energy above the threshold.

2. Carrier Sense Only: A busy channel is reported if signals with the same
modulation and spreading characteristics of IEEE 802.15.4 are detected. The
energy of these signals is not checked.

3. Carrier Sense with Energy Above Threshold: A busy channel is reported if
signals with the same modulation and spreading characteristics of IEEE
802.15.4 and energy above a threshold are detected.

The mode and energy threshold parameters are controlled via the
PHY_CC_CCA.CCA_MODE sub register and the CCA_THRES.CCA_ED_THRES
sub register. It is also possible to tune the carrier sense algorithm, but it is strongly
advised not to do so. The reset value of the CCA_THRES.CCA_CS_THRES sub
register should be used to avoid a too strict channel access.

A description of the associated TAT implementation can be found in section 11.9.

5.1.2 Manual Clear Channel Assessment

A CCA can only be initiated if the radio transceiver is in the RX_ON or BUSY_RX
state. Writing one to the PHY_CC_CCA.CCA_REQUEST sub register starts the
assessment. After 140 µs the algorithm is finished and the result can be read from the
TRX_STATUS.CCA_STATUS sub register. Reading the TRX_STATUS.CCA_DONE
sub register can be done to check if the algorithm finished within the specified time
period. The two mentioned sub registers are located in the same register, and will be
cleared when the first read operation occurs after the conversion. See Figure 5-1 for
further details.

A description of the associated TAT implementation can be found in section 11.10.

16 AVR2001

Figure 5-1 Manual CCA

mcu AT86RF230

Set PHY_CC_CCA.CCA_REQUEST to 1

140 us

Read TRX_STATUS

5.2 Energy Detection Measurement
This section describes two ways to do an Energy Detection (ED) measurement. The
measurement it self is done by averaging the RSSI (See section 5.4) value over 8
IEEE 802.15.4 symbols.

5.2.1 Manual Energy Detection Measurement

The programming sequence is initiated by writing any value to the
PHY_ED_LEVEL.ED_LEVEL register. It is assumed that the radio transceiver is in
one of the following states: RX_ON, BUSY_RX. The measurement result can be read
back from the PHY_ED_LEVEL.ED_LEVEL register 140 µs after the register was first
written.

A description of the associated TAT implementation can be found in section 11.9.

Figure 5-2 Energy Detection Measurement

mcu AT86RF230
Write 0 to PHY_ED_LEVEL

140 us

Read PHY_ED_LEVEL

5.2.2 Energy Detection Measurement During Frame Reception

The AT86RF230 radio transceiver will automatically start an ED measurement when
a Start Of Frame Delimiter (SFD) is found. 140 µs after the RX_START interrupt is
signaled the measured ED level is written to the PHY_ED_LEVEL.ED_LEVEL
register. The new value is available in 96 µs after the TRX_END interrupt for the
same frame is signaled.

8087A-AVR-07/07

 AVR2001

5.2.3 How to Interpret the Energy Detection Value

The PHY_ED_LEVEL.ED_LEVEL register is 8 bits wide, however the valid range is
from 0 to 84. All other values will not occur (85 to 255). If zero is read from the
register, this indicates that the measured energy is less than –91 dBm. Figure 5-3
illustrates the mapping between register value and dBm.

Figure 5-3 Mapping between ED value and dBm

[-dBm]

ED
0 8

7

91

4

1 dBm

5.3 Link Quality Indication Measurement
The Link Quality Indication (LQI) measurement is done by the radio transceiver each
time a new frame is received. The LQI value will be written directly to the frame buffer
and is not available through one of the registers. Figure 5-4 shows how the contents
of the frame buffer are organized during reception. The last read byte holds the LQI
value.

Figure 5-4 LQI in Frame Buffer

Frame Length[7:0] Data[7:0]

Command Byte:
Frame Read

LQIData[7:0]

To Radio Transceiver

Byte Number: 0 n-1 n

Received From Radio Transceiver

5.4 Received Signal Strength Indication Measurement
The Received Signal Strength Indication (RSSI) is a generic metric often used in
wireless communication technology. The AT86RF230 radio transceiver updates it’s
internal RSSI register every 2 µs, given that it is in one of the following states:

 17

8087A-AVR-07/07

18 AVR2001

• RX_ON

• BUSY_RX

• RX_AACK_ON

• BUSY_RX_AACK

• RX_AACK_NOCLK (Even if it is assumed that the controller is sleeping).

The RSSI value will be stored in the five bit wide PHY_RSSI.RSSI sub register.
Figure 5-5 gives an illustration of how the values read from the RSSI register map to
dBm. Subsection 5.4.1 and subsection 5.4.2 describes two different ways to read the
RSSI value.

Figure 5-5 Mapping between RSSI value and dBm

[-dBm]

RSSI
0 2

10

91

7

3 dBm

5.4.1 Get RSSI

It is valid to read the RSSI value from the RX_ON and BUSY_RX states. The value is
obtained by reading the PHY_RSSI.RSSI sub register. The read value will be a
number between 0 and 28 indicating the current amount of radio energy measured on
the antenna pins.

A description of the associated TAT implementation can be found in section 11.11.

5.4.2 Get Frame RSSI

For some applications it also makes sense to find the RSSI value associated to a
newly received frame. This is possible since the RSSI register is updated once per
symbol. Reading the register immediately after the RX_START interrupt is signaled
represents the RSSI value for the frame under reception. See Figure 5-6 for further
details.

8087A-AVR-07/07

 AVR2001

Figure 5-6 Read RSSI value during frame reception

mcu AT86RF230

Read RSSI Register

Start Of Frame

RX_ON

 RX_START Interrupt

BUSY_RX

6 Programming Sequence: Frame Transaction
This chapter describes how to transmit and receive frames without using any of the
automated features of the radio transceiver. In this basic mode of transmission and
reception it is important to ensure that the timing is correct, especially for systems
aiming for IEEE 802.15.4 compliance.

Table 6-1 gives a quick reference to the described sequences.

Table 6-1. Described Programming Sequences
Sequence Chapter Comment

Frame Transmission with
Pin Start.

Section 6.1 Writing to the frame buffer and initiate the
transmission by toggling the SLP_TR pin.

Frame Transmission with
Register Start.

Section 6.2 Writing to the frame buffer and initiate the
transmission via the TRX_STATE.TRX_CMD
sub register.

Basic Frame Reception. Section 6.3 Reading from the frame buffer after TRX_END
interrupt.

Optimized Frame
Reception.

Section 6.4 Reading from the frame buffer after the
RX_START interrupt is signaled.

6.1 Frame Transmission with Pin Start
This section describes the programming sequence required to send a frame with pin
start. The SLP_TR pin is used for this. This is a dual role pin that is either used for
state transitions (sleep) or frame transmission.

Figure 6-1 shows the details and timing information on how to transmit a frame with
pin start. The sequence is initiated by pulling the SLP_TR high, and then back to low.
This spike (Must be at least 65ns long) will make the radio transceiver enter the
BUSY_TX mode and start transmitting the preamble and Start of Frame Delimiter
fields as specified by the IEEE 802.15.4 standard. This synchronization header is 5
octets long and will take 160 µs to transmit (One octet takes 32 µs). It is very
important that the frame length is written to the frame buffer within this time, and that
the last byte arrives within:

160µs + 32µs * (frame length)

 19

8087A-AVR-07/07

20 AVR2001

It is an absolute criterion that this timing is met. The transmission will be corrupted
otherwise. A TRX_END event will signaled when the last octet is sent from frame
buffer. The frame can now be considered sent, and the radio transceiver will return to
PLL_ON state.

Downloading the frame completely to the radio transceiver and then toggling the
SLP_TR line is also possible. This way it is not necessary to think about the strict
timing of the method outlined above, however each transmission cycle takes more
time.

Figure 6-1 Frame Transmission with Pin Start

mcu AT86RF230

Pull SLP_TR pin Low

160 us

TRX_END Interrupt

Pull SLP_TR pin High

Transmit: [Preamble and SFD]

Download Frame
Transmit: [Length, Data and CRC]

65 ns

6.2 Frame Transmission with Register Start
This section describes the programming sequence required to send a frame with
register start.

Figure 6-2 shows the details and timing information on how to transmit a frame with
register start. The sequence is initiated by writing the CMD_TX_START command to
the TRX_STATE.TRX_CMD sub register. Rest of the sequence is identical to that
described in section 6.1.

8087A-AVR-07/07

 AVR2001

Figure 6-2 Frame Transmission with Register Start

mcu AT86RF230

Send CMD_TRX_START

160 us

TRX_END Interrupt

Transmit: [Preamble and SFD]

Download Frame
Transmit: [Length, Data and CRC]

6.3 Basic Frame Reception
This programming sequence is used to load a frame from the radio transceiver after it
has been completely stored in the frame buffer.

Figure 6-3 shows the detail in this sequence. The RX_START interrupt event will be
signaled when the radio transceiver receives a valid preamble and SFD. The state will
change to BUSY_RX and the received data will be copied to the frame buffer. The
TRX_END interrupt event will be signaled when the last octet is copied to the frame
buffer. The next step is to upload the newly arrived frame from the radio transceiver to
the connected microcontroller.

The suggested sequence above is very secure and should be considered as the
correct way to handle a frame reception. Section 6.4 shows how to optimize the frame
reception so that it takes shorter time. It should be evident that some time could be
saved if the frame transaction could start directly after the RX_START interrupt event
is signaled, and then read the octets as soon as they are copied to the frame buffer.

Figure 6-3 Basic Frame Reception

mcu AT86RF230

RX_START Interrupt

TRX_END Interrupt

Receive: [Preamble and SFD]

Upload Frame

Receive: [Data]

6.4 Advanced Frame Reception
The programming sequence described in this section is a time optimized version of
that described in section 6.3. This sequence describes how it is possible to start
reading from the frame buffer while the radio transceiver is still writing to it. Doing this

 21

8087A-AVR-07/07

22 AVR2001

will save some time compared to the algorithm described in section 6.3, but this is not
straight forward due to:

• The speed of the air interface is 250 kbps. One octet (8-bits) will be written to
the frame buffer every 32 µs.

• The SPI module on the AVR microcontroller can generally be clocked at half
the system clock frequency. At 8 MHz the SPI can be run at 4 Mbps in master
mode. Neglecting the data handling on the microcontroller side, a new octet
can in theory be read from the frame buffer every 2 µs.

From the above presentation of the communication interfaces, it is clear that the SPI
is in average 16 times faster than the air interface. If the frame upload is started
directly after the RX_START interrupt event, it is very likely that the frame buffer is
under run (Read too fast).

Figure 6-4 illustrates how the problem outlined above can be handled so that it is safe
to start reading from the frame buffer immediately after the RX_START interrupt
event is signaled from the radio transceiver. Immediately after the interrupt is
signaled, a 32 µs delay is necessary to ensure that the frame length is received (First
octet after the Preamble and SFD). The frame length is then read and used to
calculate a new delay period. This delay period will ensure that the frame buffer is not
under run even if the frame upload is started before the TRX_END interrupt event is
signaled. Figure 6-5 shows different delay periods as a function of frame length.

Figure 6-4 Advanced Frame Reception

mcu AT86RF230

RX_START Interrupt

32 us

TRX_END Interrupt

Receive: [Preamble and SFD]

Read Frame Length
Receive: [Data]

Upload Frame

wait x

8087A-AVR-07/07

 AVR2001

Figure 6-5 Delay before frame upload can start. SPI at 4Mbps

7 Programming Sequence: Setup of Extended Features
This chapter contains information on how configure some of the extended features of
the AT86RF230 radio transceiver. These features are thoroughly described in the
datasheet and chapter 8.

Table 7-1 gives a quick reference to the described sequences.

Table 7-1. Described Programming Sequences
Sequence Chapter Comment

Setup of the CRC block. Section 7.1 The radio transceiver has an automated CRC
for all frames to be transmitted.

Setup of the CSMA
algorithm.

Section 7.2 How to configure the CSMA algorithm.

Setup of the Address Filter. Section 7.3 How to use the radio transceivers address
filter.

7.1 Auto Generated CRC for Transmit Frames
To detect bit errors, the IEEE 802.15.4 standard define a Frame Check Sequence
(FCS) mechanism employing a 16-bit CRC algorithm. The 16-bit CRC value is the
two last octets of any IEEE 802.15.4 frame. The AT86RF230 radio transceiver has
hardware support to do this calculation when frames are written to the internal frame
buffer.

 23

8087A-AVR-07/07

24 AVR2001
8087A-AVR-07/07

The automatic CRC will be applied to any frame written to the frame buffer, when the
PHY_TX_PWR.TX_AUTO_CRC_ON sub register is set to 1. Setting the same sub
register to zero will disable the CRC.

A description of the associated TAT implementation can be found in section 11.26.

7.2 Automated CSMA Algorithm (TX_ARET_ON)
Section 8.1 describes a special mode that automates the channel access algorithm
defined by the IEEE 802.15.4 standard. The necessary sequences to configure this
feature are described in the reminder of this section.

The following parameters are used to configure the CSMA-CA algorithm:

• CSMA_RETRIES: This parameter defines how many times to retry the
CSMA-CA channel access algorithm before giving up. The parameter is
controlled via the XAH_CTRL.MAX_CSMA_RETRIES sub register.

• CSMA_SEED: This parameter is used to seed the random number generator
used by the CSMA-CA algorithm. The parameter is controlled via the
CSMA_SEED_0 register and the CSMA_SEED_1.CSMA_SEED_1 sub
register.

• MIN_BE: This parameter defines the minimum back off exponent in the
CSMA-CA algorithm. The parameter is controlled via the
CSMA_SEED_1.MIN_BE sub register.

• MAX_FRAME_RETRIES: This parameter defines how many times to repeat
a frame transmission before it fails. The parameter is controlled via the
XAH_CTRL.MAX_FRAME_RETRIES sub register.

Note: The following is important to ensure correct operation of the radio transceiver:

1. MAX_FRAME_RETRIES must always equal zero. A frame will not be retried
after the CSMA-CA algorithm has failed. This must be handled in software.

2. The CSMA_SEED parameter should not be altered from its reset value, since
this will corrupt the operation of the random number generator.

Figure 7-1 shows the steps necessary to configure the automated CSMA-CA feature
of the radio transceiver. First the XAH_CTRL.MAX_FRAME_RETRIES sub register
will be set to zero as described above. Then the XAH_CTRL.MAX_CSMA_RETRIES
and CSMA_SEED_1.MIN_BE sub registers can be updated with user-defined values.

A description of the associated TAT implementation can be found in section 11.34.

 AVR2001

Figure 7-1 Configuration of Automated CSMA Parameters

mcu AT86RF230

Set MAX_FRAME_RETRIES to 0

Set MAX_CSMA_RETRIES to user_csma

Set MIN_BE to user_min_be

7.3 Address Filter Setup (RX_AACK)
Section 8.2 describes a special mode that automates the acknowledging of frames
received by the radio transceiver. The necessary sequences to configure this feature
are described in the reminder of this section.

The following parameters are used to configure the automated acknowledge
algorithm:

• 16-bit PAN ID: Personal Area Network Identifier (PAN ID) of the device.
• 16-bit Short Address: Short address of the device.
• 64-bit IEEE Address: Extended Address of the device.
• Coordinator Flag: Either one or zero if the device has role as PAN coordinator or

not.
• TX_AUTO_CRC_ON Flag: This flag must be set to one.

Figure 7-2 shows the necessary steps to configure the radio transceiver so that the
automated acknowledge feature can be used. This programming sequence can be
applied in any state except: P_ON, SLEEP, RX_AACK_ON, BUSY_RX_AACK,
RX_AACK_NOCLK and BUSY_RX_AACK_NOCLK. The following registers will be
written:

1. PAN_ID_0: Lower 8-bits of PAN ID.
2. PAN_ID_1: Higher 8-bits of PAN ID.
3. SHORT_ADDR_0: Lower 8-bits of short address.
4. SHORT_ADDR_1: Higher 8-bits of short address.
5. IEEE_ADDR_0: Lower 8-bits of the IEEE address, bits [7:0].
6. IEEE_ADDR_1: 8-bits of the IEEE address, bits [15:8].
7. IEEE_ADDR_2: 8-bits of the IEEE address, bits [23:16].
8. IEEE_ADDR_3: 8-bits of the IEEE address, bits [31:24].
9. IEEE_ADDR_4: 8-bits of the IEEE address, bits [39:32].
10. IEEE_ADDR_5: 8-bits of the IEEE address, bits [47:40].
11. IEEE_ADDR_6: 8-bits of the IEEE address, bits [55:48].
12. IEEE_ADDR_7: 8-bits of the IEEE address, bits [63:56].
13. CSMA_SEED_1.I_AM_COORD: One if the device’s role is PAN coordinator, zero

otherwise.
14. PHY_TX_PWR.TX_AUTO_CRC_ON: Must be set to one.

 25

8087A-AVR-07/07

26 AVR2001

Figure 7-2 Address Filter Setup

mcu AT86RF230

Set PAN_ID_0 to user_panid_0

Set PAN_ID_1 to user_panid_0

Set SHORT_ADDR_0 to user_short_0

Set SHORT_ADDR_1 to user_short_1

Set IEEE_ADDR_0 to user_ext_0

Set IEEE_ADDR_1 to user_ext_1

Set IEEE_ADDR_2 to user_ext_2

Set IEEE_ADDR_3 to user_ext_3

Set IEEE_ADDR_4 to user_ext_4

Set IEEE_ADDR_5 to user_ext_5

Set IEEE_ADDR_6 to user_ext_6

Set IEEE_ADDR_7 to user_ext_7

Set I_AM_COORD to user_iam_coord

Set TX_AUTO_CRC_ON to 1

8 Programming Sequence: Extended Frame Transmission and Reception
The AT86RF230 radio transceiver has some features that are hardware accelerated.
Section 8.1 describes the accelerated CCA and frame transmission mode, and
section 8.2 describes an accelerated frame reception and acknowledge mode. These
two modes are tailored for IEEE 802.15.4 operation, and it is assumed that all frames
are compliant to this standard. Also note that some of the interrupt events signaled
from the radio transceiver has alternative meanings in the extended frame
transmission and reception modes.

Table 8-1 gives a quick reference to the described sequences.

Table 8-1. Described Programming Sequences
Sequence Chapter

Automated CSMA Algorithm and Frame Transmission. Section 8.1

Automated Frame Reception and Acknowledge. Section 8.2

8.1 Automated CSMA Algorithm and Frame Transmission (TX_ARET_ON)
As mentioned in the introduction of this chapter, the radio transceiver can provide an
accelerated CCA followed by a frame transmission. The hardware will also switch to
receive mode and wait for an acknowledge frame if this is requested.

Note that before using this feature it is required that the CSMA algorithm is configured
as described in section 7.1 and 7.2.

8087A-AVR-07/07

 AVR2001

 27

8087A-AVR-07/07

The programming sequence is illustrated in Figure 8-1. The sequence is initiated by
toggling the SLP_TR line similar to the frame transmission with pin start described in
section 6.1. The radio transceiver will do a state transition from TX_ARET_ ON to
BUSY_TX_ARET and start the CCA check. If the channel access fails a TRX_END
interrupt event will be signaled and the TRX_STATE.TRAC_STATUS sub register will
indicate a channel access failure and the sequence terminates.

The frame preamble and SFD will be transmitted if the channel is found to be in idle.
To save some time, the frame to be transmitted is written to the radio transceiver’
frame buffer while it is sent onto the air. Now one of two things can occur:

1. The frame transmitted requests an acknowledgement: SUCCESS (0) is
written to the TRX_STATE.TRAC_STATUS sub register if a SFD is detected
within 34 symbols. And the timing details shown in Figure 8-2 is not violated.

2. No acknowledge frame is requested: A SFD is not detected within the
requested 34 symbols; see Figure 8-2, and NO_ACK (5) is written to the
TRX_STATE.TRAC_STATUS sub register.

For both cases the TRX_END interrupt event will be signaled. The radio transceiver
will do a state transition from BUSY_TX_ARET back TX_ARET_ ON. The frame
initially downloaded to the frame buffer is protected, and a retransmission can be
done with the pin start method without writing to the frame buffer again.

28 AVR2001

Figure 8-1 Automated CSMA and Frame Transmission

mcu AT86RF230

Pull SLP_TR Pin Low

TRX_END Interrupt

Transmit: [Preamble and SFD]

Pull SLP_TR Pin High

Transmit: [Length, Data, CRC]

Download Frame

Read TRX_STATE.TRAC_STATUS

CCA

288 us

65 ns

Process ACK

Figure 8-2 Timing Details in AUTO_CSMA

End of Transmission

SFD CRC16LEN ACK [Time in Symbols]

34 36 42 46

NO_ACK if no SFD
detected

SUCCESS

8.2 Automated Frame Reception and Acknowledge (RX_AACK_ON)
This section describes another automated feature that the AT86RF230 radio
transceiver provides. With the system properly configured and in the RX_AACK_ON
state, it is possible to automatically acknowledge frames that are received.

Note that before using this feature it is required that the address filter is configured as
described in section 7.3.

Figure 8-3 shows the details of the automated acknowledge feature that can be
applied when a new frame is received. This feature is only available with the radio in
the RX_AACK_ON state and with the address filter properly configured. If the radio
transceiver is in the RX_AACK_ON state and a valid frame preamble and SFD is

8087A-AVR-07/07

 AVR2001

detected, a state transition to the BUSY_RX_AACK will be done and the received
data written to the internal frame buffer. The TRX_END interrupt event will be
signaled to the connected microcontroller and the newly arrived frame can be
uploaded.

If an acknowledgement is requested, the radio transceiver will handle this. The radio
transceiver will stay in the BUSY_RX_AACK state and start a wait timer that equals
the receive-to-transmit turnaround time as specified in the IEEE 802.15.4 standard.
This timer will expire within 12 symbols or 192 µs, and then start transmitting the
generated acknowledge frame. The radio transceiver will return to the RX_AACK_ON
state when the acknowledge frame is sent. Further timing information regarding the
acknowledge sequence can be found in Figure 8-4.

Figure 8-3 RX_AACK Details

mcu AT86RF230

TRX_END Interrupt

544 us

Receive: [Preamble and SFD]

Upload Frame

Receive: [Data]

Transmit: [Preamble, SFD and ACK]

Figure 8-4 Timing Details during RX_AACK
End of Reception

SFD CRC16LEN ACK [Time in Symbols]

12 34

TRX_END Interrupt

Preamble

9 The Transceiver Access Toolbox
The Transceiver Access Toolbox was mentioned briefly already in the introduction of
this application note. The TAT is implemented as an easy-to-use library that covers
most of the functionality provided by the AT86RF230 radio transceiver. The library is
completely written in the C programming language.

 29

8087A-AVR-07/07

30 AVR2001

This chapter will start by presenting the TAT architecture and the associated source
code hierarchy. The current release of the TAT is made for the AVR microcontroller.
However, special care has been taken so that also other Atmel microcontrollers can
be supported.

Section 9.3 contains some hints on how to alter the current source code so that also
other targets, such that SAM7 or AVR32 can be supported. Finally there is a overview
of the resources used by the TAT for different compilers.

9.1 Architecture
The TAT is architected as two thin layers of code, as can be seen in Figure 9-1. This
two-stage design was chosen, because one of the design goals for the TAT is that it
should be compatible with multiple Atmel microcontroller architectures (AVR, AVR32
and SAM7) and the AT86RF230 radio transceiver.

Therefore a thin layer of hardware centric code, the Hardware Abstraction Layer
(HAL), is found as very the bottom layer. The interface between the HAL and the next
higher layer, the TAT, is through a well-defined API. This design ensures that the TAT
is fully hardware independent. It will run on top of any HAL that provides the specified
API and functionality. Though, the TAT is highly transceiver dependant, and will not
work with other IEEE 802.15.4 radio transceivers on the market. It has been
optimized and tuned for the AT86RF230 radio transceiver’s features and dynamics.

The reminder of this section contains more information about the hardware
independent and hardware dependant parts of the TAT.

Figure 9-1 TAT Architecture

Transceiver Access Toolbox

HAL

AT86RF230

SPIIRQ PIO
AVR

HAL

SAM7

HAL

AVR32

9.1.1 Hardware Dependant Source Code – HAL

The HAL and the concept behind it were briefly introduced above. The idea is to have
a hardware dependant layer of code, that ensure by software design that the TAT can
run on multiple Atmel microcontroller architectures. The HAL is to provide an
optimized interface with the necessary hooks to fully control and configure the
AT86RF230 radio transceiver.

8087A-AVR-07/07

 AVR2001

First it is natural to briefly introduce the necessary hardware interfaces to control and
configure the radio transceiver and then the associated API.

Figure 9-2 gives an overview of the microcontroller interface for the AT86RF230 radio
transceiver. The interface comprises a slave SPI and additional control signals. The
SPI is used for frame buffer and register access. The additional control signals are
connected to the PIO/IRQ interface of the microcontroller:

• CLKM: Prescalable clock output from the radio transceiver. Can be used as clock
source for a timer or the microcontroller itself.

• IRQ: This line signals interrupt events from the radio transceiver. It will typically be
connected to a pin change interrupt or timer input capture unit on the
microcontroller.

• RST: This line is used to do a hardware reset of the radio transceiver.
• SLP_TR: This line is used both for state transition, SLEEP, and to start frame

transmissions.
• TST: Special Continuous Transmission Test Mode pin. See the AT86RF230 radio

transceiver’s datasheet for more information about this pin (Appendix A). Not a
part of the HAL API.

From the brief presentation above it is evident that the HAL must contain methods to
do register and frame buffer accesses, and to control the necessary IO lines. Table
9-1 gives an overview of the HAL API. This API is the common interface that the TAT
is using to interact with the radio transceiver.

Figure 9-2 AT86RF230 Microcontroller Interface

SPI

Register File
64 x 8 bit

Frame Buffer
128 Byte

PIO

S
L
P
_
T
R

R
S
T

C
L
K
M

I
R
Q

T
S
T

AT86RF230 Control Interface

Table 9-1. HAL API
Function Name Resource Description

hal_set_slptr_high() PIO Pull SLP_TR line high.
hal_set_slptr_low() PIO Pull SLP_TR line low.
hal_get_slptr() PIO Get state of the SLP_TR line

(High/Low).
hal_set_rst_high() PIO Pull RST line high.

 31

8087A-AVR-07/07

32 AVR2001
8087A-AVR-07/07

Function Name Resource Description
hal_set_rst_low() PIO Pull RST line low.
hal_get_rst() PIO Get state of the RST line

(High/Low).
hal_enable_trx_interrupt() PIO/IRQ Enable interrupt from the radio

transceiver.
hal_disable_trx_interrupt() PIO/IRQ Disable interrupt from the radio

transceiver.
hal_init() na Initialize the HAL. Must be called

in advance of any other function.
hal_register_read() SPI Read one of the registers in the

register file.
hal_register_write() SPI Write a value to a register in the

register file.
hal_subregister_read() SPI Read value from a sub register.
hal_subregister_write() SPI Write value to a sub register.
hal_read_frame_length() SPI Read length of frame currently

stored in the frame buffer.
hal_frame_read() SPI Read frame stored in frame buffer.
hal_frame_write() SPI Write new frame to the frame

buffer.
hal_sram_read() SPI Read certain bytes from the frame

buffer.
hal_sram_write() SPI Write values to certain bytes in the

frame buffer.
hal_get_system_time() TIMER Returns the current system time in

IEEE 802.15.4 symbols (16 µs).

9.1.2 Hardware Independent Code – TAT

Based on the chosen software architecture, the TAT itself contains only hardware
independent code, but this code is highly transceiver dependant. The functionality
provided by the TAT is optimized and tuned for the AT86RF230 radio transceiver.
The implemented functionality is a direct projection of the AT86RF230 radio
transceiver’s feature set and dynamics.

The features and modules are controlled through simple function calls. Lets use
configuration of automated CRC in transmit mode as an example.

The AT86RF230 radio transceiver has hardware support for CRC calculation on
outgoing frames. When enabled, this feature will calculate the CCITT-16 CRC over
the current frame buffer content, and write it to the last two bytes in the frame buffer.
The associated function in the TAT configuring the above-described feature is:

void tat_use_auto_tx_crc(bool auto_crc_on)

The automated CRC will be enabled or disabled depending on the Boolean
parameter supplied in the function call. The above referenced function will internally
write the PHY_TX_PWR.TX_AUTO_CRC_ON sub register. This is done by calling
the hal_subregister_write() function with the correct parameter set.

 AVR2001

 33

8087A-AVR-07/07

The essence in the above outlined example is that any function in the TAT layer will
only contain calls to HAL level function exclusively. And this way ensure portability
between a wide range of microcontrollers.

9.2 File Description
Illustration of the file directory.

9.3 Configuration and Porting
The current release of the TAT only contains support for the AVR microcontroller.
However, the source code contains compile switches for both the AVR32 and SAM7
microcontrollers. These two targets will be added at a later date. If other
microcontrollers than those listed here are necessary, it should be a fairly easy task to
add support for them:

• Extend the compile switches so your “hal_xxx.c”, “hal_xxx.h” and “compiler_xxx.h”
are available for the TAT during compilation.

• Implement a “hal_xxx.c” that complies with the HAL API presented in Table 9-1.

9.4 Resource Consumption
The following two tables, Table 9-2 and Table 9-3, contain information about the
resources consumed by the TAT, with respect to different compilers. The
Atmega1281 running at 8MHz was used as test platform.

Table 9-2 Resource Consumption - Code Size
Compiler Program Memory Data Memory

IAR EWAVR 4.30A (Medium
Optimization Level)

2194 Bytes 16 Bytes

AVR-GCC (-Os Optimization
Level)

TBD TBD

Table 9-3 Resource Consumption – Interrupt Response Time
Compiler Best Case Worst Case

IAR EWAVR 4.30A TBD TBD
AVR-GCC TBD TBD

10 Abbreviations and Definitions
API Application Programming Interface

CCA Clear Channel Assessment

CRC Cyclic Redundancy Check

CSMA-CA Carrier Sense Multiple Access with Collision Avoidance

dBm decibel (dB) of the measured power referenced to one milliwatt (mW).

ED Energy Detection

FCS Frame Check Sequence

34 AVR2001
8087A-AVR-07/07

LQI Link Quality Indication

MAC Medium Access Control Layer

MSC Message Sequence Chart

PAN Personal Area Network

PHY Physical Layer

RSSI Received Signal Strength Indication

SFD Start Of Frame Delimiter

SHR Synchronization Header

SPI Serial Peripheral Interface

TAT Transceiver Access Toolbox

11 Appendix A: Transceiver Access Toolbox API

11.1 Initialize Transceiver Access Toolbox

11.1.1 Semantics of the function
tat_status_t tat_init(void)

11.1.2 Appropriate usage

The tat_init function is called by the end-user directly after power-on to configure the
transceiver access toolbox and the radio transceiver. A call to this function must be
done prior to calling any of the other functions in the TAT library. It is safe to call this
function from any of the radio transceiver’s states.

11.1.3 Effect on receipt

When calling the tat_init function the modules necessary to interface and control the
AT86RF230 radio transceiver will be initialized. The radio transceiver will be taken
form P_ON state to TRX_OFF.

Table 11-1. Possible Return Values

Value Description

TAT_SUCCESS The initialization procedure was successful. The radio
transceiver is now in the TRX_OFF state.

TAT_UNSUPPORTED_DEVICE The current device connected to the controller is not an
Atmel AT86RF230 radio transceiver.

TAT_TIMED_OUT The radio transceiver was not able to enter the
TRX_OFF state within time.

11.2 Get Current Channel

11.2.1 Semantics of the function
uint8_t tat_get_operating_channel(void)

 AVR2001

 35

8087A-AVR-07/07

11.2.2 Appropriate usage

The tat_get_operating_channel is called by the end-user to find what channel
(Frequency) the radio transceiver’s PLL is locked to.

11.2.3 Effect on receipt

When calling the tat_get_operating_channel the PHY_CC_CCA.CHANNEL sub
register is read and its content returned.

Table 11-2 Possible Return Values
Value Description

11 to 26 Valid channels.

11.3 Set Current Channel

11.3.1.1 Semantics of the function

tat_status_t tat_set_operating_channel(uint8_t channel)

Table 11-3. tat_set_operating_channel Parameters
Name Type Valid Range Description

channel uint8_t 11 to 26 New channel to lock on.

11.3.1.2 Appropriate usage

The tat_set_operating_channel function is called by the end-user to change the
operating channel.

11.3.1.3 Effect on receipt

When calling the tat_set_operating_channel the channel parameter will first be
checked. TAT_INVALID_ARGUMENT is returned if it is not within the valid range
defined in Table 11-3. It is possible to change the radio transceiver’s operating
channel from any state except SLEEP. TAT_WRONG_STATE is returned if the
device is found to be at sleep.
Now the new channel is written to the PHY_CC_CCA.CHANNEL sub register. If the
radio transceiver’s state equals RX_ON or PLL_ON, a delay of 150 s is added to the
sequence, so that the PLL has time to lock to the new channel.
The PHY_CC_CCA.CHANNEL sub register is read to verify if the new operating
channel was set. TAT_SUCCESS is returned if the channel was set correctly, and
TAT_TIMED_OUT in any other case.

Table 11-4. Possible Return Values

Value Description

TAT_SUCCESS Channel changed to the one specified.

TAT_WRONG_STATE The radio transceiver is not in a valid state to change
the channel. It is in SLEEP.

TAT_INVALID_ARGUMENT The channel parameter is not within the specified
bounds.

36 AVR2001
8087A-AVR-07/07

Value Description

TAT_TIMED_OUT The channel switch took too long time. PLL did not lock
within the specified time.

11.4 Get Transmit Power Level

11.4.1 Semantics of the function
uint8_t tat_get_tx_power_level(void)

11.4.2 Appropriate usage

The tat_get_tx_power_level function is called by the end-user to read the current
output power level of the radio transceiver.

11.4.3 Effect on receipt

When calling the tat_get_tx_power_level the current output power level of the radio
transceiver will be read (PHY_TX_PWR.TX_PWR sub register).

Table 11-5. Possible Return Values
Value Description

0 to 15 Current output power in TX Power Setting.

11.5 Set Transmit Power Level

11.5.1 Semantics of the function
tat_status_t tat_set_tx_power_level(uint8_t power_level)

Table 11-6. tat_set_tx_power_level Parameters
Name Type Valid Range Description

power_level uint8_t 0 to 15 Output Power in TX Power
Setting

11.5.2 Appropriate usage

The tat_set_tx_power_level function is called by the end-user whenever he needs to
change the output power of the radio transceiver.

11.5.3 Effect on receipt

When calling the tat_set_tx_power_level the new output power will be checked to be
within the defined bounds. TAT_INVALID_ARGUMENT will be returned if the
supplied function parameter is out of bounds.

TAT_WRONG_STATE is returned if the radio transceiver is found to be in the SLEEP
state. If these checks are passed, the new power setting will be written to the
PHY_TX_PWR.TX_PWR sub register and TAT_SUCCESS is returned.

Table 11-7. Possible Return Values
Value Description

 AVR2001

 37

8087A-AVR-07/07

Value Description

TAT_SUCCESS New output power set.

TAT_INVALID_ARGUMENT The supplied function argument is out of bounds.

TAT_WRONG_STATE The transmit power cannot be changed in SLEEP.

11.6 Detect Energy on Antenna Pins

11.6.1 Semantics of the function
tat_status_t tat_do_ed_scan(uint8_t *ed_level)

Table 11-8. tat_do_ed_scan Parameters
Name Type Valid Range Description

ed_level uint8_t * pointer Pointer to where the detected
Energy Level is to be written.

11.6.2 Appropriate usage

The tat_do_ed_scan function is used to measure the energy level sensed on the
antenna pins. This measurement is an important building block for the PLME-
ED.request primitive found in the IEEE 802.15.4 standard.

11.6.3 Effect on receipt

When calling the tat_do_ed_scan the current state of the radio transceiver will be
read. TAT_WRONG_STATE is returned if the transceiver’s state is not found to be:
RX_ON or BUSY_RX.

An energy detection measurement will then be initiated. After 140 µs the result is
available and will be written to the supplied pointer (Memory Address).
TAT_SUCCESS is finally returned indicating that the measurement is valid.

Table 11-9. Possible Return Values
Value Description

TAT_SUCCESS ED scan successful.

TAT_WRONG_STATE This function cannot be called for the current state of
the radio transceiver.

11.7 Get CCA Mode

11.7.1 Semantics of the function
tat_status_t tat_get_cca_mode(void)

11.7.2 Appropriate usage

The tat_get_cca_mode function returns the current CCA mode used by the radio
transceiver.

11.7.3 Effect on receipt

When calling the tat_get_cca_mode the PHY_CC_CCA.CCA_MODE sub register is
read and its contents returned.

38 AVR2001
8087A-AVR-07/07

Table 11-10. Possible Return Values
Value Description

0 to 3 The possible CCA modes.

11.8 Get CCA Mode Energy Threshold

11.8.1 Semantics of the function
uint8_t tat_get_ed_threshold(void)

11.8.2 Appropriate usage

The tat_get_ed_threshold function is used to read the energy threshold that is used
by the CCA algorithm in mode 1 and mode 3.

11.8.3 Effect on receipt

When calling the tat_get_ed_threshold the CCA_THRES.CCA_ED_THRES sub
register is read and its contents returned.

Table 11-11 Possible Return Values
Value Description

0 to 15 Current CCA_ED_THRES level.

11.9 Set CCA Mode

11.9.1 Semantics of the function
tat_status_t tat_set_cca_mode(cca_mode_t mode, uint8_t
ed_threshold)

Table 11-12. tat_set_cca_mode Parameters
Name Type Valid Range Description

mode cca_mode_t 1 to 3 New CCA mode to use.

ed_threshold uint8_t 0 to 15 ED threshold

11.9.2 Appropriate usage

The tat_set_cca_mode function is called by the end-user to configure one of the three
different clear channel assessment algorithms supported by the radio transceiver.

11.9.3 Effect on receipt

When calling the tat_set_cca_mode the mode parameter will first be read. Three
different flavors of the clear channel assessment algorithm is supported:

• Mode 1: Energy Above Threshold Only

In this mode the radio transceiver will measure the energy detected on the
antenna pins, and determine if this level is above or below the ed_threshold.
Example: If the ed_threshold is set to be –61 dBm and the measured energy
level is –60 dBm the channel is assumed to be busy

 AVR2001

 39

8087A-AVR-07/07

• Mode 2: Carrier Sense Only

In the carrier sense mode a special correlation scheme is used on each
received symbol to determine if this is an IEEE 802.15.4 signal or not. In this
mode it is not possible to set a threshold for the algorithm. The radio
transceiver supports this, but tests done by Atmel show that it is not advisable
to alter the default value.

• Mode 3: Carrier Sense with Energy above Threshold

This mode combines the two previous modes. A “AND” operation is applied
on the two results. A busy channel is only signaled if both Mode1 and Mode2
indicate a busy channel.

TAT_INVALID_ARGUMENT will be returned if one of the function’s parameters is out
of bounds. A state check is also done to verify that the radio transceiver is not in the
SLEEP state. TAT_WRONG_STATE is returned if the radio transceiver is found to be
at SLEEP.

After the initial state and parameter check is passed, the
CCA_THRES.CCA_ED_THRES and PHY_CC_CCA.CCA_MODE sub registers are
updated. Finally TAT_SUCCESS is returned to confirm a successful configuration.

Table 11-13. Possible Return Values
Value Description

TAT_SUCCESS CCA mode configuration was successful.

TAT_WRONG_STATE Device is at SLEEP.

TAT_INVALID_ARGUMENT One of the three function parameters is out of bounds.

11.10 Do Clear Channel Assessment

11.10.1 Semantics of the function
tat_status_t tat_do_cca(void)

11.10.2 Appropriate usage

The tat_do_cca function will execute the clear channel assessment algorithm and
detect if a channel is ready for transmission or not.

11.10.3 Effect on receipt

When calling the tat_do_cca the current state of the radio transceiver will be read.
TAT_WRONG_STATE is returned if the transceiver is not found to be in the PLL_ON.
The transceiver is then requested to do a state transition to RX_ON.
TAT_TIMED_OUT is returned if this transition fails.

The clear channel assessment is initiated if the state transition was successful
(Writing one to the PHY_CC_CCA.CCA_REQUEST sub register). After 140 µs the
result is ready and read from the radio transceiver. TAT_TIMED_OUT will be returned
if the CCA algorithm did not finish within the specified time.

Finally TAT_CCA_IDLE or TAT_CCA_BUSY will be returned if the channel was found
to be ready for transmission or not.

40 AVR2001
8087A-AVR-07/07

Table 11-14. Possible Return Values
Value Description

TAT_CCA_IDLE The channel is in idle state. State of the radio
transceiver is RX_ON.

TAT_CCA_BUSY The channel is in busy state. State of the radio
transceiver is RX_ON.

TAT_WRONG_STATE Transceiver not in PLL_ON state.

TAT_TIMED_OUT Internal state transition or CCA request timed out. State
of the radio transceiver is unknown when this value is
returned.

11.11 Get Received Signal Strength Indication

11.11.1 Semantics of the function
tat_status_t tat_get_rssi_value(uint8_t *rssi)

Table 11-15. tat_get_rssi_value Parameters
Name Type Valid Range Description

rssi
uint8_t*

na
Pointer to the measured RSSI
level.

11.11.2 Appropriate usage

The tat_get_rssi_value function is called by the end-user to read the RSSI value from
the radio, typically immediately after a new frame has been received.

11.11.3 Effect on receipt

When calling the tat_get_rssi_value the current state of the radio transceiver will be
read. TAT_WRONG_STATE is returned if the state is not found to be RX_ON or
BUSY_RX.

If the state check described above is passed, the PHY_RSSI.RSSI sub register will
be read and the value written to the memory location pointed to by the rssi parameter.
Finally TAT_SUCCESS is returned.

Table 11-16. Possible Return Values
Value Description

TAT_SUCCESS RSSI read successfully.

TAT_WRONG_STATE The radio transceiver is not in RX_ON or BUSY_RX.

11.12 Get Battery Threshold used by Battery Monitor

11.12.1 Semantics of the function
uint8_t tat_batmon_get_voltage_threshold(void)

 AVR2001

 41

8087A-AVR-07/07

11.12.2 Appropriate usage

The tat_batmon_get_voltage_threshold is used to read the current voltage threshold
used by the battery monitor.

11.12.3 Effect on receipt

When calling the tat_batmon_get_voltage_threshold the BATMON.BATMON_VTH
sub register is read and returned.

Table 11-17. Possible Return Values
Value Description

0 to 15 Threshold Voltage.

11.13 Get Voltage Range used by Battery Monitor

11.13.1 Semantics of the function
uint8_t tat_batmon_get_voltage_range(void)

11.13.2 Appropriate usage

The tat_batmon_get_voltage_range function is used to find out if the low or high
voltage threshold is currently used by the battery monitor. The battery monitor can
select between a low or high voltage thresholds. Low voltage threshold runs from
1.70V to 2.45V with 16 steps defined, while high voltage range runs from 2.55V to
3.675V with the same number of steps defined.

11.13.3 Effect on receipt

When calling the tat_batmon_get_voltage_range the BATMON.BATMON_HR is read
and returned.

Table 11-18. Possible Return Values
Value Description

0 or 1 Low or High Voltage Used.

11.14 Configure Battery Monitor

11.14.1 Semantics of the function
tat_status_t tat_batmon_configure(bool range, uint8_t
voltage_threshold)

Table 11-19. tat_batmon_configure Parameters
Name Type Valid Range Description

range bool False or true Setting this parameter to false
selects the low voltage
threshold. True indicates that
the high voltage threshold is to
be used.

42 AVR2001
8087A-AVR-07/07

Name Type Valid Range Description

voltage_threshold uint8_t 0 to 15 Threshold Voltage.

11.14.2 Appropriate usage

The tat_batmon_configure function is used to set the voltage threshold that the
battery shall use.

If BATMON_HR = = 0 //Low Voltage Range.

Threshold Voltage = 1.70 + 0.05 * voltage_threshold [V]

If BATMON_HR = = 1 //High Voltage Range.

Threshold Voltage = 2.55 + 0.075 * voltage_threshold [V]

11.14.3 Effect on receipt

When calling the tat_batmon_configure the current state of the radio transceiver and
supplied function parameters will be checked. If they are found to be out of bounds, or
the device is in SLEEP, then TAT_INVALID_ARGUMENT or TAT_WRONG_STATE
is returned.

Then the BATMON.BATMON_HR and BATMON.BATMON_VTH are written with the
supplied range and voltage threshold. Finally TAT_SUCCESS is returned.

Table 11-20. Possible Return Values
Value Description

TAT_SUCCESS Configuration successful.

TAT_WRONG_STATE Radio transceiver is at SLEEP.

TAT_INVALID_ARGUMENT One of the supplied function parameters is out of
bounds.

11.15 Get Status from Battery Monitor

11.15.1 Semantics of the function
tat_status_t tat_batmon_get_status(void)

11.15.2 Appropriate usage

The tat_batmon_get_status function is used to poll the BATMON.BATMON_OK bit. If
the voltage threshold is less than the measured supply voltage, this bit will be 1. In
any other case the bit is zero, indicating that the supply voltage is lower than the
configured threshold.

11.15.3 Effect on receipt

When calling the tat_batmon_get_status the BATMON.BATMON_OK sub register is
read. TAT_BAT_LOW is returned if the bit equals 0, and TAT_BAT_OK returned if the
bit equals one.

 AVR2001

 43

8087A-AVR-07/07

Table 11-21. Possible Return Values
Value Description

TAT_BAT_OK Supply voltage above the predefined voltage threshold.

TAT_BAT_LOW Supply voltage is below the predefined voltage
threshold.

11.16 Get CLKM Frequency

11.16.1 Semantics of the function
uint8_t tat_get_clock_speed(void)

11.16.2 Appropriate usage

The tat_get_clock_speed function is used to read the current frequency supplied on
the CLKM pin of the radio transceiver.

11.16.3 Effect on receipt

When calling the tat_get_clock_speed the TRX_CTRL_0.CLKM_CTRL sub register
will be read and returned.

Table 11-22. Possible Return Values
Value Description

CLKM_DISABLED No Clock available.

CLKM_1MHZ 1 MHz clock frequency on the CLKM pad.

CLKM_2MHZ 2 MHz clock frequency on the CLKM pad.

CLKM_4MHZ 4 MHz clock frequency on the CLKM pad.

CLKM_8MHZ 8 MHz clock frequency on the CLKM pad.

CLKM_16MHZ 16 MHz clock frequency on the CLKM pad.

11.17 Set CLKM Frequency

11.17.1 Semantics of the function
tat_status_t tat_set_clock_speed(bool direct, uint8_t clock_speed
)

Table 11-23. tat_set_clock_speed Parameters
Name Type Valid Range Description

direct bool false or true True indicates that the frequency
should be changed directly. If this
parameter is set to false, the
frequency on the CLKM pin will
be changed next time the device
returns from SLEEP.

clock_speed uint8_t 0 to 5 Possible frequency settings.

44 AVR2001
8087A-AVR-07/07

11.17.2 Appropriate usage

The tat_set_clock_speed function is used to configure the frequency supplied on the
CLKM pin. Writing to the TRX_CTRL_0.CLKM_CTRL sub register controls this:

• 0: Clock disabled. CLKM pin high.

• 1: Frequency on the CLKM pin is 1 MHz.

• 2: Frequency on the CLKM pin is 2 MHz.

• 3: Frequency on the CLKM pin is 4 MHz.

• 4: Frequency on the CLKM pin is 8 MHz.

• 5: Frequency on the CLKM pin is 16 MHz.

The direct parameter is used to control if the frequency is changed directly or not.
Two options are available:

1. direct == true: Change the frequency directly.

2. direct == false: The frequency will be changed when the radio transceiver
does a state transition from SLEEP to TRX_OFF.

11.17.3 Effect on receipt

When calling the tat_set_clock_speed the clock_speed parameter will be checked.
TAT_INVALID_ARGUMENT will be returned if an illegal frequency is requested.

Then the TRX_CTRL_0.CLKM_SHA_SEL sub register will be written reflecting the
direct function parameter (Direct or indirect frequency change). The
TRX_CTRL_0.CLKM_CTRL sub register is also updated with the requested
frequency. Finally TAT_SUCCESS is returned.

Table 11-24. Possible Return Values
Value Description

TAT_SUCCESS CLKM frequency updated

TAT_INVALID_ARGUMENT The clock_speed parameter is out of bounds.

11.18 Calibrate Filter

11.18.1 Semantics of the function
tat_status_t tat_calibrate_filter(void)

11.18.2 Appropriate usage

The tat_calibrate_filter function is used to calibrate the Single Side Band Filter
transfer function independent of temperature and part-to-part variations.

11.18.3 Effect on receipt

When calling the tat_calibrate_filter the current state of the radio transceiver will be
read. TAT_WRONG_STATE is returned if the transceiver’s state is not found to be:
TRX_OFF or PLL_ON.

 AVR2001

 45

8087A-AVR-07/07

The filter tuning is initiated by writing one to the FTN_CTRL.FTN_START sub
register. Then a small delay cycle is entered so that the filter tuning cycle can
complete.

When the delay is completed, the FTN_CTRL.FTN_START sub register is read again
to verify if the filter tuning completed or not. TAT_TIMED_OUT is returned if the filter-
tuning algorithm did not complete within the specified time, and TAT_SUCCESS
returned if it did complete within the specified time.

Table 11-25. Possible Return Values
Value Description

TAT_SUCCESS Filter Calibration Successful.

TAT_WRONG_STATE Radio transceiver is not in TRX_OFF or PLL_ON state.

TAT_TIMED_OUT The calibration algorithm did not finish within time.

11.19 Calibrate PLL

11.19.1 Semantics of the function
tat_status_t tat_calibrate_pll(void)

11.19.2 Appropriate usage

The tat_calibrate_pll function is used to calibrate the PLL’s center frequency and
delay unit.

11.19.3 Effect on receipt

When calling the tat_calibrate_pll the current state of the radio transceiver will be
read. TAT_WRONG_STATE is returned if the transceiver’s state is not found to be in
PLL_ON.

The calibration it self is initiated by writing a one to the PLL_CF.PLL_CF_START and
PLL_DCU.PLL_DCU_START sub registers. The calibration itself takes about 150 µs,
so a delay loop is entered. When the delay is finished, the status of the two
calibrations initiated will be checked.

TAT_SUCCESS is returned if the PLL calibration was successful, in any other case
TAT_TIMED_OUT is returned.

Table 11-26. Possible Return Values
Value Description

TAT_SUCCESS PLL calibration successful.

TAT_WRONG_STATE The radio transceiver is not in the PLL_ON state.

TAT_TIMED_OUT PLL calibration did not complete within the specified
time.

11.20 Get Radio Transceiver’s State

11.20.1 Semantics of the function
uint8_t tat_get_trx_state(void)

46 AVR2001
8087A-AVR-07/07

11.20.2 Appropriate usage

The tat_get_trx_state function is used to read the current state of the radio
transceiver’s state machine.

11.20.3 Effect on receipt

When calling the tat_get_trx_state the TRX_STATUS.TRX_STATUS sub register will
be read, and the current state of the radio transceiver is returned.

Table 11-27. Possible Return Values
Value Description

P_ON (0) Current radio transceiver state is P_ON.

BUSY_RX (1) Current radio transceiver state is BUSY_RX.

BUSY_TX (2) Current radio transceiver state is BUSY_TX.

RX_ON (6) Current radio transceiver state is RX_ON.

TRX_OFF (8) Current radio transceiver state is TRX_OFF.

PLL_ON (9) Current radio transceiver state is PLL_ON.

SLEEP (15) Current radio transceiver state is SLEEP.

BUSY_RX_AACK (17) Current radio transceiver state is BUSY_RX_AACK.

BUSY_TX_ARET (18) Current radio transceiver state is BUSY_TX_ARET.

RX_AACK_ON (22) Current radio transceiver state is RX_AACK_ON.

TX_ARET_ON (25) Current radio transceiver state is TX_ARET_ON.

RX_ON_NOCLK (28) Current radio transceiver state is RX_ON_NOCLK.

RX_AACK_ON_NOCLK (29) Current radio transceiver state is
RX_AACK_ON_NOCLK.

BUSY_RX_AACK_NOCLK (30) Current radio transceiver state is
BUSY_RX_AACK_NOCLK.

State Transition (31) The radio transceiver is busy doing a state transition.

11.21 Set Radio Transceiver’s State

11.21.1 Semantics of the function
tat_status_t tat_set_trx_state(uint8_t new_state)

Table 11-28. tat_set_trx_state Parameters
Name Type Valid Range Description

new_state uint8_t 6, 8, 9, 22, 25 Requested new state.

11.21.2 Appropriate usage

The tat_set_trx_state function is used to change state in the radio transceiver’s state
machine.

11.21.3 Effect on receipt

When calling the tat_set_trx_state the new_state parameter will be checked to be a
valid state for transition. Then it is checked if the radio transceiver is sleeping or busy,
and TAT_WRONG_STATE or TAT_BUSY_STATE is returned respectively.

 AVR2001

 47

8087A-AVR-07/07

If these checks pass, the requested state will be written to the
TRX_STATE.TRX_CMD sub register. Depending upon the requested state, a delay
loop is entered since some transitions can take up to 180 µs.

Then the TRX_STATUS.TRX_STATUS sub register is read and the value compared
with the new_state parameter. TAT_SUCCESS is returned if the read state is the
same as the requested state, otherwise TAT_TIMED_OUT is returned.

Table 11-29. Possible Return Values
Value Description

TAT_SUCCESS State transition successful.

TAT_WRONG_STATE The requested new_state is not valid.

TAT_BUSY_STATE The radio transceiver is currently busy.

TAT_TIMED_OUT The state transition took too long time.

11.22 Go to SLEEP

11.22.1 Semantics of the function
tat_status_t tat_enter_sleep_mode(void)

11.22.2 Appropriate usage

The tat_enter_sleep function is used to do a state transition from any state to SLEEP.

11.22.3 Effect on receipt

When calling the tat_enter_sleep the current state of the radio transceiver will be
read. TAT_SUCCESS is returned if the radio transceiver is already in the SLEEP
state.

If the radio transceiver is not currently sleeping, it will be forced to the TRX_OFF state
by using the FORCE_TRX_OFF command (Writing 3 to the TRX_STATE.TRX_CMD
sub register). TAT_TIMED_OUT is returned if the transition to TRX_OFF takes too
long.

When it is clear that the radio transceiver is in the TRX_OFF state, pulling the
SLP_TR line high enters SLEEP. TAT_SUCCESS is finally returned.

Table 11-30. Possible Return Values
Value Description

TAT_SUCCESS SLEEP state entered.

TAT_TIMED_OUT State transition from TRX_OFF to SLEEP took too long
time.

48 AVR2001
8087A-AVR-07/07

11.23 Leave SLEEP

11.23.1 Semantics of the function
tat_status_t tat_leave_sleep_mode(void)

11.23.2 Appropriate usage

The tat_leave_sleep function is used to do a state transition from SLEEP to
TRX_OFF.

11.23.3 Effect on receipt

When calling the tat_leave_sleep the current state of the radio transceiver will be
read. TAT_SUCCESS if returned if the radio transceiver is not sleeping.

If the device is at sleep, the SLP_TR pin will be pulled low and a delay loop started.
The state transition from SLEEP to TRX_OFF takes approximately 880 µs.

The current state of the radio transceiver will be read after the delay has finished.
TAT_SUCCESS is returned if the state is found to be TRX_OFF. TAT_TIMED_OUT
is returned in any other case.

Table 11-31. Possible Return Values
Value Description

TAT_SUCCESS State transition from SLEEP to TRX_OFF was
successful.

TAT_TIMED_OUT The state transition took too long time.

11.24 Reset State Machine

11.24.1 Semantics of the function
void tat_reset_state_machine(void)

11.24.2 Appropriate usage

The tat_reset_state_machine function is called by the end-user to reset the radio
transceiver’s state machine. The state after the reset will be TRX_OFF.

11.24.3 Effect on receipt

When calling the tat_reset_state_machine the SLP_TR line will be pulled low to
ensure that any *_NOCLK state is exited. Then the FORCE_TRX_OFF command will
be issued and the state transition to TRX_OFF will be completed within 6 µs.

11.25 Reset Radio Transceiver

11.25.1 Semantics of the function
void tat_reset_trx(void)

 AVR2001

 49

8087A-AVR-07/07

11.25.2 Appropriate usage

The tat_reset_trx function is called by the end-user to reset the radio transceiver’s
registers and state machine. The state after the reset will be TRX_OFF.

11.25.3 Effect on receipt

When calling the tat_reset_trx the RST line will be toggled. This will cause all
registers to be reset and the state machine to enter the TRX_OFF state.

11.26 Enable or Disable Automatic CRC

11.26.1 Semantics of the function
void tat_use_auto_tx_crc(const bool auto_crc_on)

Table 11-32. tat_use_auto_tx_crc Parameters
Name Type Valid Range Description

false Turn auto CRC off. auto_crc_on bool

true Turn auto CRC on.

11.26.2 Appropriate usage

The tat_use_auto_tx_crc function is called by the end-user to enable or disable the
automatic CRC feature for transmit frames.

11.26.3 Effect on receipt

When calling the tat_use_auto_tx_crc the PHY_TX_PWR.TX_AUTO_CRC_ON sub
register will be read and checked against the supplied function parameter

When using the automatic CRC mechanism the data length must be increased by two
(16 bit CRC) bytes and two bytes must be added to the frame payload. Typically two
0x00 bytes will be appended at the end of the frame during download to the radio
transceiver’s frame buffer.

11.27 Send Data

11.27.1 Semantics of the function
tat_status_t tat_send_data(uint8_t *data, uint8_t data_length)

Table 11-33. tat_send_data Parameters
Name Type Valid Range Description

data uint8_t* pointer Pointer to data to transmit.

data_length Uint8_t 0 to 127 Length of data to transmit.

11.27.2 Appropriate usage

The tat_send_data function is used to load data into the radio transceiver’s frame
buffer and send it.

50 AVR2001
8087A-AVR-07/07

11.27.3 Effect on receipt

When calling the tat_send_data the data_length function parameter will be checked.
TAT_INVALID_ARGUMENT is returned if the parameter is found to be out of bounds.

The current state of the radio transceiver is also read, and checked to equal PLL_ON.
TAT_WRONG_STATE is returned if the read state does not equal PLL_ON.

If these checks are passed, the SLP_TR pin will be toggled and the frame pointed to
by the data parameter downloaded. The initial toggle of the SLP_TR pin will actually
start the transmission, but the fact that a preamble and SFD is transmitted before the
frame buffer is utilized. This saves some time, but can cause an error if data is not
available in the frame buffer at the correct point in time (This is met by keeping the
SPI rate higher than 250kbps). TAT_SUCCESS is returned when the frame has been
downloaded.

Table 11-34. Possible Return Values
Value Description

TAT_SUCCESS Data sent successfully.

TAT_WRONG_STATE Data can only be sent from the PLL_ON state.

TAT_INVALID_ARGUMENT The data_length parameter is out of bounds.

11.28 Get PAN ID

11.28.1 Semantics of the function
uint16_t tat_get_pan_id(void)

11.28.2 Appropriate usage

The tat_get_pan_id function is used to read the current PAN ID used by the radio
transceiver’s frame filter.

11.28.3 Effect on receipt

When calling the tat_get_pan_id the PAN_ID_0 and PAN_ID_1 registers will be read,
and their values returned as a 16-bit number.

Table 11-35. Possible Return Values
Value Description

0 to 0xFFFF PAN ID used by the address filter.

11.29 Set PAN ID

11.29.1 Semantics of the function
void tat_set_pan_id(uint16_t new_pan_id)

Table 11-36. tat_set_pan_id Parameters
Name Type Valid Range Description

new_pan_id uint16_t 0 to 0xFFFF New PAN ID.

 AVR2001

 51

8087A-AVR-07/07

11.29.2 Appropriate usage

The tat_set_pan_id function is used to set a new PAN ID used by the radio
transceiver’s address filter.

11.29.3 Effect on receipt

When calling the tat_set_pan_id the new_pan_id parameter will be written to the
PAN_ID_0 and PAN_ID_1 register.

11.30 Get Short Address

11.30.1 Semantics of the function
uint16_t tat_get_short_address(void)

11.30.2 Appropriate usage

The tat_get_short_address function is used to read the current short address used by
the radio transceiver’s address filter.

11.30.3 Effect on receipt

When calling the tat_get_short_address a 16-bit return value will be generated from
the content in the SHORT_ADDR_0 and SHORT_ADDR_1 registers.

Table 11-37. Possible Return Values
Value Description

0 to 0xFFFF Possible Short Addresses.

11.31 Set Short Address

11.31.1 Semantics of the function
void tat_set_short_address(uint16_t new_short_address)

Table 11-38. tat_set_short_address Parameters
Name Type Valid Range Description

new_short_address uint16_t 0 to 0xFFFF New Short Address.

11.31.2 Appropriate usage

The tat_short_address function is used to set the short address used by the radio
transceiver’s address filter.

11.31.3 Effect on receipt

When calling the tat_short_address the SHORT_ADDR_0 and SHORT_ADDR_1
registers will be updated according to the new_short_address parameter.

52 AVR2001
8087A-AVR-07/07

11.32 Get Extended Address

11.32.1 Semantics of the function
uint64_t tat_get_extended_address(void)

11.32.2 Appropriate usage

The tat_get_extended_address function is used to read the current extended address
used by the radio transceiver’s address filter.

11.32.3 Effect on receipt

When calling the tat_get_extended_address a 64-bit return value will be generated
from the content in the IEEE_ADDR_0, IEEE_ADDR_1, IEEE_ADDR_2,
IEEE_ADDR_3, IEEE_ADDR_4, IEEE_ADDR_5, IEEE_ADDR_6 and IEEE_ADDR_7
registers.

Table 11-39. Possible Return Values
Value Description

0 to 264-1 Valid Extended Addresses.

11.33 Set Extended Address

11.33.1 Semantics of the function
void tat_set_extended_address(uint64_t new_extended_address)

Table 11-40. tat_set_extended_address Parameters
Name Type Valid Range Description

new_extended_address uint64_t 0 to 264-1 New Extended Address.

11.33.2 Appropriate usage

The tat_set_extended_address function is used to set the extended address (IEEE
Address) used by the radio transceiver’s address filter.

11.33.3 Effect on receipt

When calling the tat_set_extended_address the IEEE_ADDR_0, IEEE_ADDR_1,
IEEE_ADDR_2, IEEE_ADDR_3, IEEE_ADDR_4, IEEE_ADDR_5, IEEE_ADDR_6
and IEEE_ADDR_7 registers will be updated according to the
new_extended_address parameter.

11.34 Configure the CSMA Algorithm

11.34.1 Semantics of the function
tat_status_t tat_configure_csma(const uint8_t seed0, const uint8_t
be_csma_seed1)

Table 11-41. tat_configure_csma arguments
Name Type Valid Range Description

 AVR2001

 53

8087A-AVR-07/07

Name Type Valid Range Description

seed0 uint8_t 0 to 0xFF Seed in the random back off
algorithm.

be_csma_seed1 uint8_t 0 to 0xFF Compound variable
containing seed1, min_be
and max_csma_retries.

11.34.2 Appropriate usage

The tat_configure_csma function is called by the end-user to configure the CSMA
algorithm used by the auto retry mechanism.

11.34.3 Effect on receipt

When calling the tat_configure_csma the current state of the radio transceiver will be
read. TAT_WRONG_STATE will be returned if the state is found to be in SLEEP.

All the function parameters will then be extracted and written to the associated
registers. TAT_SUCCESS will finally be returned.

The XAH_CTRL.MAX_FRAME_RETRIES sub register will be set to 0 to ensure
correct operation of the auto mode (See the AT86RF230 datasheet’s errata section
for further information).

Table 11-42. Possible Return Values
Value Description

TAT_SUCCESS CSMA algorithm configured.

TAT_WRONG_STATE The radio transceiver is currently sleeping, and it is not
possible to configure the CSMA algorithm.

11.35 Clear BAT_LOW flag

11.35.1 Semantics of the function
void tat_clear_bat_low_flag_ref(void)

11.35.2 Appropriate usage

The tat_clear_bat_low_flag_ref function is used to disable the user interface for the
BAT_LOW interrupt.

11.35.3 Effect on receipt

When calling the tat_clear_bat_low_flag_ref the BAT_LOW bit in the
tat_isr_flag_mask will be cleared. The result is that an associated interrupt flag will
not be incremented when a BAT_LOW interrupt is signaled.

11.36 Set BAT_LOW flag

11.36.1 Semantics of the function
void tat_set_bat_low_flag_ref(uint8_t volatile *flag)

Table 11-43. tat_set_bat_low_flag_ref Parameters
Name Type Valid Range Description

54 AVR2001
8087A-AVR-07/07

Name Type Valid Range Description

flag uint8_t * pointer BAT_LOW flag.

11.36.2 Appropriate usage

The tat_set_bat_low_flag_ref function is used to register an interrupt flag to the
BAT_LOW interrupt and enable the associated interrupt user interface.

11.36.3 Effect on receipt

When calling the tat_set_bat_low_flag_ref the BAT_LOW bit in the
tat_isr_flag_mask will be set. The result is that supplied interrupt flag will be
incremented when a BAT_LOW interrupt is signaled.

11.37 Enable BAT_LOW Interrupt

11.37.1 Semantics of the function
void tat_enable_bat_low_isr(void)

11.37.2 Appropriate usage

The tat_enable_bat_low_isr function is used to re-enable the BAT_LOW interrupt
from the radio transceiver. The BAT_LOW interrupt will be disabled the first time it is
signaled. This is done to prevent that the interrupt is continuously signaled.

When the supply voltage is restored, it is safe to enable the BAT_LOW interrupt again
by calling the tat_enable_bat_low_isr function.

11.37.3 Effect on receipt

When calling the tat_enable_bat_low_isr the BAT_LOW bit in IRQ_MASK register will
be set, and thus enabling the interrupt.

11.38 Clear TRX_UR Flag

11.38.1 Semantics of the function
void tat_clear_trx_ur_flag_ref(void)

11.38.2 Appropriate usage

The tat_clear_trx_ur_flag_ref function is used to disable the user interface for the
TRX_UR interrupt.

11.38.3 Effect on receipt

When calling the tat_clear_trx_ur_flag_ref the TRX_UR bit in the tat_isr_flag_mask
will be cleared. The result is that an associated interrupt flag will not be incremented
when a TRX_UR interrupt is signaled.

11.39 Set TRX_UR Flag

11.39.1 Semantics of the function
void tat_set_trx_ur_flag_ref(uint8_t volatile *flag)

 AVR2001

 55

8087A-AVR-07/07

Table 11-44. tat_set_trx_ur_flag_ref Parameters
Name Type Valid Range Description

flag uint8_t* pointer TRX_UR Flag.

11.39.2 Appropriate usage

The tat_set_trx_ur_flag_ref function is used to register an interrupt flag to the
TRX_UR interrupt and enable the associated interrupt user interface.

11.39.3 Effect on receipt

When calling the tat_set_bat_low_flag_ref the BAT_LOW bit in the
tat_isr_flag_mask will be set. The result is that supplied interrupt flag will be
incremented when a BAT_LOW interrupt is signaled.

11.40 Clear TRX_END Flag

11.40.1 Semantics of the function
void tat_clear_trx_end_flag_ref(void)

11.40.2 Appropriate usage

The tat_clear_trx_end_flag_ref function is used to disable the user interface for the
TRX_END interrupt.

11.40.3 Effect on receipt

When calling the tat_clear_trx_end_flag_ref the TRX_END bit in the
tat_isr_flag_mask will be cleared. The result is that an associated interrupt flag will
not be incremented when a TRX_END interrupt is signaled.

11.41 Set TRX_END Flag

11.41.1 Semantics of the function
void tat_set_trx_end_flag_ref(uint8_t volatile *flag)

Table 11-45. tat_set_trx_end_flag_ref Parameters
Name Type Valid Range Description

flag uint8_t* pointer TRX_END Flag.

11.41.2 Appropriate usage

The tat_set_trx_end_flag_ref function is used to register an interrupt flag to the
TRX_END interrupt and enable the associated interrupt user interface.

11.41.3 Effect on receipt

When calling the tat_set_trx_end_flag_ref the TRX_END bit in the
tat_isr_flag_mask will be set. The result is that supplied interrupt flag will be
incremented when a TRX_END interrupt is signaled.

56 AVR2001
8087A-AVR-07/07

11.42 Clear RX_ON Flag

11.42.1 Semantics of the function
void tat_clear_rx_start_flag_ref(void)

11.42.2 Appropriate usage

The tat_clear_rx_start_flag_ref function is used to disable the user interface for the
RX_START interrupt.

11.42.3 Effect on receipt

When calling the tat_clear_rx_start_flag_ref the RX_START bit in the
tat_isr_flag_mask will be cleared. The result is that an associated interrupt flag will
not be incremented when a RX_START interrupt is signaled.

11.43 Set RX_ON Data Buffer

11.43.1 Semantics of the function
void tat_set_rx_buffer(uint8_t *rx_buffer)

Table 11-46. tat_set_rx_buffer Parameters
Name Type Valid Range Description

rx_buffer uint8_t* pointer New receive data buffer.

11.43.2 Appropriate usage

The tat_set_rx_buffer function is used to update the receive buffer currently used by
the TAT.

11.43.3 Effect on receipt

When calling the tat_set_rx_buffer the rx_data variable will be set to the memory
location pointed to by rx_buffer.

11.44 Set RX_ON Flag

11.44.1 Semantics of the function
void tat_set_rx_start_flag_ref(uint8_t volatile *flag, uint8_t
*rx_buffer)

Table 11-47. tat_set_rx_start_flag_ref Parameters
Name Type Valid Range Description

flag uint8_t* pointer RX_ON Flag.

rx_buffer uint8_t* pointer Receive Buffer.

11.44.2 Appropriate usage

The tat_set_rx_start_flag_ref function is used to register an interrupt flag to the
RX_START interrupt and enable the associated interrupt user interface.

 AVR2001

 57

8087A-AVR-07/07

11.44.3 Effect on receipt

When calling the tat_set_rx_start_flag_ref the RX_START bit in the
tat_isr_flag_mask will be set. The result is that supplied interrupt flag will be
incremented when a RX_START interrupt is signaled.

11.45 Clear PLL_UNLOCK Flag

11.45.1 Semantics of the function
void tat_clear_pll_unlock_flag_ref(void)

11.45.2 Appropriate usage

The tat_clear_pll_unlock_flag_ref function is used to disable the user interface for the
PLL_UNLOCK interrupt.

11.45.3 Effect on receipt

When calling the tat_clear_pll_unlock_flag_ref the PLL_UNLOCK bit in the
tat_isr_flag_mask will be cleared. The result is that an associated interrupt flag will
not be incremented when a PLL_UNLOCK interrupt is signaled.

11.46 Set PLL_UNLOCK Flag

11.46.1 Semantics of the function
void tat_set_pll_unlock_flag_ref(uint8_t volatile *flag)

Table 11-48. tat_set_pll_unlock_flag_ref Parameters
Name Type Valid Range Description

flag uint8_t* pointer PLL_UNLOCK Flag.

11.46.2 Appropriate usage

The tat_set_pll_unlock_flag_ref function is used to register an interrupt flag to the
PLL_UNLOCK interrupt and enable the associated interrupt user interface.

11.46.3 Effect on receipt

When calling the tat_set_pll_unlock_flag_ref the PLL_UNLOCK bit in the
tat_isr_flag_mask will be set. The result is that supplied interrupt flag will be
incremented when a PLL_UNLOCK interrupt is signaled.

11.47 Clear PLL_LOCK Flag

11.47.1 Semantics of the function
void tat_clear_pll_lock_flag_ref(void)

11.47.2 Appropriate usage

The tat_clear_pll_lock_flag_ref function is used to disable the user interface for the
PLL_LOCK interrupt.

58 AVR2001
8087A-AVR-07/07

11.47.3 Effect on receipt

When calling the tat_clear_pll_lock_flag_ref the PLL_LOCK bit in the
tat_isr_flag_mask will be cleared. The result is that an associated interrupt flag will
not be incremented when a PLL_LOCK interrupt is signaled.

11.48 Set PLL_LOCK Flag

11.48.1 Semantics of the function
void tat_set_pll_lock_flag_ref(uint8_t volatile *flag)

Table 11-49. tat_set_pll_lock_flag_ref Parameters
Name Type Valid Range Description

flag uint8_t* pointer PLL_LOCK Flag.

11.48.2 Appropriate usage

The tat_set_pll_lock_flag_ref function is used to register an interrupt flag to the
PLL_LOCK interrupt and enable the associated interrupt user interface.

11.48.3 Effect on receipt

When calling the tat_set_pll_lock_flag_ref the PLL_LOCK bit in the
tat_isr_flag_mask will be set. The result is that supplied interrupt flag will be
incremented when a PLL_LOCK interrupt is signaled.

11.49 HAL Interrupt Handler

11.49.1 Semantics of the function
void hal_user_interrupt_handler(uint8_t source, uint32_t timestamp
)

Table 11-50. hal_user_interrupt_handler Parameters
Name Type Valid Range Description

source uint8_t 0 to 0xFF Interrupt Source.

timestamp uint32_t 0 to 232-1 Interrupt Timestamp.

11.49.2 Appropriate usage

The hal_user_interrupt_handler function is called from the HAL level interrupt handler
when a valid interrupt is signaled from the radio transceiver. This function should not
be called by the end-user under any circumstance.

11.49.3 Effect on receipt

When calling the hal_user_interrupt_handler the source parameter will be used to
branch the code execution for each supported interrupt:

• BAT_LOW: Disable the BAT_LOW interrupt to prevent an interrupt storm.
The associated user flag is incremented if enabled. The interrupt can be
enabled again when by calling the tat_enable_bat_low_isr function.

• TRX_UR: The associated user flag is incremented if enabled.

• TRX_END: The associated user flag is incremented if enabled.

 AVR2001

 59

8087A-AVR-07/07

• RX_START: Length of the received frame is read and the delay necessary to
prevent the frame buffer from being under-run is calculated. The received
frame will be uploaded after the calculated delay. The associated user flag is
incremented if enabled.

• PLL_UNLOCK: The associated user flag is incremented if enabled.

• PLL_LOCK: The associated user flag is incremented if enabled.

12 Table of Contents
Features... 1
1 Introduction .. 1
2 Intended Audience and Overview... 2
3 Programming Sequence: Transceiver Setup................................. 2

3.1 Radio Transceiver Initialization ... 2
3.2 Hardware Reset... 3
3.3 Reset State Machine ... 4
3.4 Get Current Channel ... 4
3.5 Set Current Channel.. 5
3.6 Get Transmit Power .. 5
3.7 Set Transmit Power... 5

4 Programming Sequence: State Transitions................................... 5
4.1 Transitions to TRX_OFF ... 6
4.2 Transitions to RX_ON ... 7
4.3 Transitions to PLL_ON .. 8
4.4 Transitions to RX_AACK_ON.. 9
4.5 Transitions to TX_ARET_ON .. 11
4.6 Transitions to SLEEP .. 13
4.7 Short Summary.. 14

5 Programming Sequence: CCA, ED, LQI and RSSI Measurements
.. 14

5.1 Clear Channel Assessment... 15
5.1.1 Setup and Configuration.. 15
5.1.2 Manual Clear Channel Assessment .. 15

5.2 Energy Detection Measurement.. 16
5.2.1 Manual Energy Detection Measurement ... 16
5.2.2 Energy Detection Measurement During Frame Reception 16
5.2.3 How to Interpret the Energy Detection Value .. 17

5.3 Link Quality Indication Measurement .. 17
5.4 Received Signal Strength Indication Measurement .. 17

5.4.1 Get RSSI ... 18

60 AVR2001
8087A-AVR-07/07

5.4.2 Get Frame RSSI.. 18
6 Programming Sequence: Frame Transaction.............................. 19

6.1 Frame Transmission with Pin Start ... 19
6.2 Frame Transmission with Register Start ... 20
6.3 Basic Frame Reception ... 21
6.4 Advanced Frame Reception.. 21

7 Programming Sequence: Setup of Extended Features 23
7.1 Auto Generated CRC for Transmit Frames... 23
7.2 Automated CSMA Algorithm (TX_AUTO_CSMA)... 24
7.3 Address Filter Setup (RX_AACK).. 25

8 Programming Sequence: Extended Frame Transmission and
Reception... 26

8.1 Automated CSMA Algorithm and Frame Transmission (TX_ARET_ON) 26
8.2 Automated Frame Reception and Acknowledge (RX_AACK) 28

9 The Transceiver Access Toolbox ... 29
10 Abbreviations and Definitions .. 33
11 Appendix A: Transceiver Access Toolbox API 34

11.1 Initialize Transceiver Access Toolbox ... 34
11.1.1 Semantics of the function .. 34
11.1.2 Appropriate usage ... 34
11.1.3 Effect on receipt .. 34

11.2 Reset Radio Transceiver... 36
11.2.1 Semantics of the function .. 48
11.2.2 Appropriate usage ... 49
11.2.3 Effect on receipt .. 49

11.3 Reset State Machine ... 48
11.3.1 Semantics of the function .. 48
11.3.2 Appropriate usage ... 48
11.3.3 Effect on receipt .. 48

11.4 Get Current Channel ... 34
11.4.1 Semantics of the function .. 34
11.4.2 Appropriate usage ... 35
11.4.3 Effect on receipt .. 35

11.5 Set Current Channel.. 35
11.6 Get Transmit Power Level... 36

11.6.1 Semantics of the function .. 36
11.6.2 Appropriate usage ... 36
11.6.3 Effect on receipt .. 36

11.7 Set Transmit Power Level ... 36
11.7.1 Semantics of the function .. 36
11.7.2 Appropriate usage ... 36
11.7.3 Effect on receipt .. 36

 AVR2001

 61

8087A-AVR-07/07

11.8 Set CCA Mode... 38
11.8.1 Semantics of the function .. 38
11.8.2 Appropriate usage ... 38
11.8.3 Effect on receipt .. 38

11.9 Do Clear Channel Assessment ... 39
11.9.1 Semantics of the function .. 39
11.9.2 Appropriate usage ... 39
11.9.3 Effect on receipt .. 39

11.10 Detect Energy on Antenna Pins .. 37
11.10.1 Semantics of the function .. 37
11.10.2 Appropriate usage ... 37
11.10.3 Effect on receipt .. 37

11.11 Get Received Signal Strength Indication .. 40
11.11.1 Semantics of the function .. 40
11.11.2 Appropriate usage ... 40
11.11.3 Effect on receipt .. 40

11.12 Enable or Disable Automatic CRC .. 49
11.12.1 Semantics of the function .. 49
11.12.2 Appropriate usage ... 49
11.12.3 Effect on receipt .. 49

11.13 Configure the CSMA Algorithm ... 52
11.13.1 Semantics of the function .. 52
11.13.2 Appropriate usage ... 53
11.13.3 Effect on receipt .. 53

12 Table of Contents... 59
Disclaimer... 62

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others, are the registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

8087A-AVR-07/07

	1 Introduction
	2 Intended Audience and Overview
	3 Programming Sequence: Transceiver Setup
	3.1 Radio Transceiver Initialization
	3.2 Hardware Reset
	3.3 Reset State Machine
	3.4 Get Current Channel
	3.5 Set Current Channel
	3.6 Get Transmit Power
	3.7 Set Transmit Power

	4 Programming Sequence: State Transitions
	4.1 Transitions to TRX_OFF
	4.2 Transitions to RX_ON
	4.3 Transitions to PLL_ON
	4.4 Transitions to RX_AACK_ON
	4.5 Transitions to TX_ARET_ON
	4.6 Transitions to SLEEP
	4.7 Short Summary

	5 Programming Sequence: CCA, ED, LQI and RSSI Measurements
	5.1 Clear Channel Assessment
	5.1.1 Setup and Configuration
	5.1.2 Manual Clear Channel Assessment

	5.2 Energy Detection Measurement
	5.2.1 Manual Energy Detection Measurement
	5.2.2 Energy Detection Measurement During Frame Reception
	5.2.3 How to Interpret the Energy Detection Value

	5.3 Link Quality Indication Measurement
	5.4 Received Signal Strength Indication Measurement
	5.4.1 Get RSSI
	5.4.2 Get Frame RSSI

	6 Programming Sequence: Frame Transaction
	6.1 Frame Transmission with Pin Start
	6.2 Frame Transmission with Register Start
	6.3 Basic Frame Reception
	6.4 Advanced Frame Reception

	7 Programming Sequence: Setup of Extended Features
	7.1 Auto Generated CRC for Transmit Frames
	7.2 Automated CSMA Algorithm (TX_ARET_ON)
	7.3 Address Filter Setup (RX_AACK)

	8 Programming Sequence: Extended Frame Transmission and Reception
	8.1 Automated CSMA Algorithm and Frame Transmission (TX_ARET_ON)
	8.2 Automated Frame Reception and Acknowledge (RX_AACK_ON)

	9 The Transceiver Access Toolbox
	9.1 Architecture
	9.1.1 Hardware Dependant Source Code – HAL
	9.1.2 Hardware Independent Code – TAT

	9.2 File Description
	9.3 Configuration and Porting
	9.4 Resource Consumption

	10 Abbreviations and Definitions
	11 Appendix A: Transceiver Access Toolbox API
	11.1 Initialize Transceiver Access Toolbox
	11.1.1 Semantics of the function
	11.1.2 Appropriate usage
	11.1.3 Effect on receipt

	11.2 Get Current Channel
	11.2.1 Semantics of the function
	11.2.2 Appropriate usage
	11.2.3 Effect on receipt

	11.3 Set Current Channel
	11.3.1.1 Semantics of the function
	11.3.1.2 Appropriate usage
	11.3.1.3 Effect on receipt

	11.4 Get Transmit Power Level
	11.4.1 Semantics of the function
	11.4.2 Appropriate usage
	11.4.3 Effect on receipt

	11.5 Set Transmit Power Level
	11.5.1 Semantics of the function
	11.5.2 Appropriate usage
	11.5.3 Effect on receipt

	11.6 Detect Energy on Antenna Pins
	11.6.1 Semantics of the function
	11.6.2 Appropriate usage
	11.6.3 Effect on receipt

	11.7 Get CCA Mode
	11.7.1 Semantics of the function
	11.7.2 Appropriate usage
	11.7.3 Effect on receipt

	11.8 Get CCA Mode Energy Threshold
	11.8.1 Semantics of the function
	11.8.2 Appropriate usage
	11.8.3 Effect on receipt

	11.9 Set CCA Mode
	11.9.1 Semantics of the function
	11.9.2 Appropriate usage
	11.9.3 Effect on receipt

	11.10 Do Clear Channel Assessment
	11.10.1 Semantics of the function
	11.10.2 Appropriate usage
	11.10.3 Effect on receipt

	11.11 Get Received Signal Strength Indication
	11.11.1 Semantics of the function
	11.11.2 Appropriate usage
	11.11.3 Effect on receipt

	11.12 Get Battery Threshold used by Battery Monitor
	11.12.1 Semantics of the function
	11.12.2 Appropriate usage
	11.12.3 Effect on receipt

	11.13 Get Voltage Range used by Battery Monitor
	11.13.1 Semantics of the function
	11.13.2 Appropriate usage
	11.13.3 Effect on receipt

	11.14 Configure Battery Monitor
	11.14.1 Semantics of the function
	11.14.2 Appropriate usage
	11.14.3 Effect on receipt

	11.15 Get Status from Battery Monitor
	11.15.1 Semantics of the function
	11.15.2 Appropriate usage
	11.15.3 Effect on receipt

	11.16 Get CLKM Frequency
	11.16.1 Semantics of the function
	11.16.2 Appropriate usage
	11.16.3 Effect on receipt

	11.17 Set CLKM Frequency
	11.17.1 Semantics of the function
	11.17.2 Appropriate usage
	11.17.3 Effect on receipt

	11.18 Calibrate Filter
	11.18.1 Semantics of the function
	11.18.2 Appropriate usage
	11.18.3 Effect on receipt

	11.19 Calibrate PLL
	11.19.1 Semantics of the function
	11.19.2 Appropriate usage
	11.19.3 Effect on receipt

	11.20 Get Radio Transceiver’s State
	11.20.1 Semantics of the function
	11.20.2 Appropriate usage
	11.20.3 Effect on receipt

	11.21 Set Radio Transceiver’s State
	11.21.1 Semantics of the function
	11.21.2 Appropriate usage
	11.21.3 Effect on receipt

	11.22 Go to SLEEP
	11.22.1 Semantics of the function
	11.22.2 Appropriate usage
	11.22.3 Effect on receipt

	11.23 Leave SLEEP
	11.23.1 Semantics of the function
	11.23.2 Appropriate usage
	11.23.3 Effect on receipt

	11.24 Reset State Machine
	11.24.1 Semantics of the function
	11.24.2 Appropriate usage
	11.24.3 Effect on receipt

	11.25 Reset Radio Transceiver
	11.25.1 Semantics of the function
	11.25.2 Appropriate usage
	11.25.3 Effect on receipt

	11.26 Enable or Disable Automatic CRC
	11.26.1 Semantics of the function
	11.26.2 Appropriate usage
	11.26.3 Effect on receipt

	11.27 Send Data
	11.27.1 Semantics of the function
	11.27.2 Appropriate usage
	11.27.3 Effect on receipt

	11.28 Get PAN ID
	11.28.1 Semantics of the function
	11.28.2 Appropriate usage
	11.28.3 Effect on receipt

	11.29 Set PAN ID
	11.29.1 Semantics of the function
	11.29.2 Appropriate usage
	11.29.3 Effect on receipt

	11.30 Get Short Address
	11.30.1 Semantics of the function
	11.30.2 Appropriate usage
	11.30.3 Effect on receipt

	11.31 Set Short Address
	11.31.1 Semantics of the function
	11.31.2 Appropriate usage
	11.31.3 Effect on receipt

	11.32 Get Extended Address
	11.32.1 Semantics of the function
	11.32.2 Appropriate usage
	11.32.3 Effect on receipt

	11.33 Set Extended Address
	11.33.1 Semantics of the function
	11.33.2 Appropriate usage
	11.33.3 Effect on receipt

	11.34 Configure the CSMA Algorithm
	11.34.1 Semantics of the function
	11.34.2 Appropriate usage
	11.34.3 Effect on receipt

	11.35 Clear BAT_LOW flag
	11.35.1 Semantics of the function
	11.35.2 Appropriate usage
	11.35.3 Effect on receipt

	11.36 Set BAT_LOW flag
	11.36.1 Semantics of the function
	11.36.2 Appropriate usage
	11.36.3 Effect on receipt

	11.37 Enable BAT_LOW Interrupt
	11.37.1 Semantics of the function
	11.37.2 Appropriate usage
	11.37.3 Effect on receipt

	11.38 Clear TRX_UR Flag
	11.38.1 Semantics of the function
	11.38.2 Appropriate usage
	11.38.3 Effect on receipt

	11.39 Set TRX_UR Flag
	11.39.1 Semantics of the function
	11.39.2 Appropriate usage
	11.39.3 Effect on receipt

	11.40 Clear TRX_END Flag
	11.40.1 Semantics of the function
	11.40.2 Appropriate usage
	11.40.3 Effect on receipt

	11.41 Set TRX_END Flag
	11.41.1 Semantics of the function
	11.41.2 Appropriate usage
	11.41.3 Effect on receipt

	11.42 Clear RX_ON Flag
	11.42.1 Semantics of the function
	11.42.2 Appropriate usage
	11.42.3 Effect on receipt

	11.43 Set RX_ON Data Buffer
	11.43.1 Semantics of the function
	11.43.2 Appropriate usage
	11.43.3 Effect on receipt

	11.44 Set RX_ON Flag
	11.44.1 Semantics of the function
	11.44.2 Appropriate usage
	11.44.3 Effect on receipt

	11.45 Clear PLL_UNLOCK Flag
	11.45.1 Semantics of the function
	11.45.2 Appropriate usage
	11.45.3 Effect on receipt

	11.46 Set PLL_UNLOCK Flag
	11.46.1 Semantics of the function
	11.46.2 Appropriate usage
	11.46.3 Effect on receipt

	11.47 Clear PLL_LOCK Flag
	11.47.1 Semantics of the function
	11.47.2 Appropriate usage
	11.47.3 Effect on receipt

	11.48 Set PLL_LOCK Flag
	11.48.1 Semantics of the function
	11.48.2 Appropriate usage
	11.48.3 Effect on receipt

	11.49 HAL Interrupt Handler
	11.49.1 Semantics of the function
	11.49.2 Appropriate usage
	11.49.3 Effect on receipt

	12 Table of Contents

